Computational model predictive and adaptive control tools

This project aims to develop a theoretical and algorithmic framework for next-generation nonlinear adaptive embedded MPC systems, enhancing data collection, calibration, and runtime adaptation for industrial applications.

Subsidie
€ 2.499.375
2024

Projectdetails

Introduction

Model predictive control (MPC) is applied with success in industry for automating constrained multivariable dynamical systems in an optimized way. However, some crucial aspects of MPC design largely remain to be addressed to unleash the full potential of MPC in applications.

Challenges in MPC Design

The efforts required to collect experimental data, identify the prediction model, and calibrate the controller must be reduced considerably. Additionally, the controller must self-adapt seamlessly to cope with unforeseen changes and not require excessively demanding computer hardware for deployment.

Project Objectives

This project aims to address methodologically such aspects and establish a theoretical and algorithmic framework for designing the next generation of nonlinear adaptive embedded MPC systems from data.

Reducing Data-Collection Efforts

  1. To reduce data-collection efforts significantly, we will develop tools that enable the design of experiments based on novel active-learning approaches to nonlinear system identification.
  2. These tools will be coupled with robust MPC schemes to ensure safe data collection.

Cutting Calibration Efforts

  1. To cut calibration efforts down drastically, we will devise innovative preference-based methods that can learn from calibrators' assessments.
  2. These methods will automatically detect critical closed-loop scenarios.

Adapting Prediction Models

  1. We will develop methods for seemingly adapting the prediction model at runtime to cope with uncertainties and model mismatches not seen during the design.
  2. Additionally, we will create methods for approximating the control law with different trade-offs between the amount of required online computations and the obtained closed-loop performance.

Demonstrating Industrial Use

To demonstrate the potential industrial use of the methodologies and algorithms developed in the project, we will formulate and solve laboratory benchmark problems on an experimental robotic platform. This platform presents a challenging system for data-driven control due to its highly nonlinear, multi-input/multi-output, and fast-sampling dynamics.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.499.375
Totale projectbegroting€ 2.499.375

Tijdlijn

Startdatum1-9-2024
Einddatum31-8-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • SCUOLA IMT (ISTITUZIONI, MERCATI, TECNOLOGIE) ALTI STUDI DI LUCCApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Prediction + Optimisation for scheduling and rostering with CMPpy

Develop a unified framework, CPMpy, to integrate machine learning with combinatorial optimization for efficient scheduling and rostering, enhancing its readiness for industrial application.

€ 150.000
ERC Advanced...

Projection-based Control: A Novel Paradigm for High-performance Systems

PROACTHIS aims to develop a novel projection-based control paradigm to enhance performance in future engineering systems through innovative design and optimization techniques.

€ 2.498.516
ERC Proof of...

Optimal Control of Solar Energy Plants

This project aims to implement coalitional Model Predictive Control on a 50MW solar trough plant to enhance energy collection and reduce maintenance costs through innovative control strategies.

€ 150.000
ERC Starting...

Model Completion through Nonlinear System Identification

COMPLETE aims to develop a nonlinear system identification framework that enhances existing models with black-box techniques for accurate, interpretable, and efficient modeling of complex dynamical systems.

€ 1.499.849
ERC Consolid...

Scalable Control Approximations for Resource Constrained Environments

This project aims to advance optimal control and decision-making for nonlinear processes on dynamic networks by developing new theories, algorithms, and software for various applications.

€ 1.998.500

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Automatisering van energieoptimalisatie

Dit project onderzoekt de automatisering van parameter estimation voor Model Predictive Control om energiebesparing en duurzaamheid te versnellen.

€ 20.000
Missiegedrev...

Owner & Occupant KPI's oriented Model Predictive OpenBuildingControl

Het project ontwikkelt modulaire voorspellende regeltechnieken voor gebouwbeheersystemen om energiebesparing en comfort te verbeteren, met als doel een duurzame en flexibele energie-integratie.

€ 3.512.530
Mkb-innovati...

Multi-stage predictive engine for low-fidelity sensors

MOOS ontwikkelt een low-fidelity sensor met een multi-stage AI-algoritme voor hoge voorspellende nauwkeurigheid in voorraadbeheer, ongeacht productvorm of opslagmethode.

€ 196.000
Mkb-innovati...

“Predictive maintenance”

Het project onderzoekt de haalbaarheid van een systeem voor predictive maintenance in de automotive sector.

€ 19.740