Perovskite Oxides for CO2 Utilization – Industrial Applicability of Tailored reverse Water Gas Shift Catalysts
This project aims to develop and commercialize novel perovskite-based catalysts for the catalytic reverse water-gas shift reaction to enhance CO2 utilization and support circular economy initiatives.
Projectdetails
Introduction
The catalytic reverse water-gas shift reaction (rWGS) will be a key technological process in the current effort to reduce the global CO2 emissions levels. It enables the utilisation of CO2 as an abundant and renewable carbon source and to transform flue gas into value-added products. Coupling the rWGS reaction with renewable energy sources will facilitate the development of closed carbon cycles and establish circular economy concepts.
Technological Obstacles
The main technological obstacles of implementing industrial rWGS processes are stability and selectivity issues of commercial catalyst materials at the required high reaction temperatures. In my current ERC project, we have developed a novel catalyst material based on perovskite oxides that solves these issues.
Catalyst Material
Perovskites are utilised in various high-performance applications (e.g., high-temperature fuel cells) and, due to their compositional flexibility, allow for a materials design approach. In first lab-scale rWGS tests, our novel Co-doped materials even outperform commercial benchmarks.
Development Steps
The design of commercial catalysts strongly differs from materials studied in fundamental research. Hence, several development steps are necessary to successfully utilise our perovskite-based catalysts in industrial processes:
- The active surface area has to be strongly increased by modifying the synthesis, enabling a scale-up of the catalyst fabrication.
- The perovskites have to be transformed into structured catalysts utilised in industrial reactors (e.g., pellets).
These modifications enable rWGS tests in a small pilot reactor and benchmarks of our material against industrial standards.
Commercialisation Potential
In parallel, the commercialisation potential of our novel perovskite catalysts for rWGS processes will be evaluated. This will enable us to showcase our vision about CO2 utilisation to industrial stakeholders and to find potential partners for future development of real-scale rWGS pilot reactors.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-5-2022 |
Einddatum | 31-10-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- MONTANUNIVERSITAET LEOBENpenvoerder
- TECHNISCHE UNIVERSITAET WIEN
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Tackling limitations of future relevant thermo-chemical reactions by exploiting the dynamic surface behaviour of complex mixed metal oxidesThis project aims to develop dynamic responsive catalysts that adapt their surface structure to enhance activity and stability, overcoming deactivation in catalytic processes through innovative engineering methods. | ERC Starting... | € 1.813.618 | 2023 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC Starting... | € 1.499.681 | 2023 | Details |
Intensified processes for CO2 conversion to sustainable synthetic fuelsThe IntensifiedCO2 project aims to revolutionize CO2 conversion to synthetic fuels by integrating two reactors into one, using metallic cobalt catalysts to enhance efficiency and selectivity. | ERC Starting... | € 1.500.000 | 2025 | Details |
In-depth understanding of multiphase mass transfer in CO2 electrolyzers through application of engineered, ordered reactor componentsTRANSCEND aims to revolutionize CO2 electrolyzers by developing an integrated design for improved mass transport, enhancing efficiency and durability for sustainable chemical and fuel production. | ERC Consolid... | € 1.999.588 | 2024 | Details |
Selective CO2 Reduction to CO and Alcohols without Platinum or Noble Group ElectrodesRECALLCO2 aims to develop a stable nickel-based CO2 electrolyzer and innovative catalytic architectures to enhance the selective production of high-energy density alcohols from CO2. | ERC Starting... | € 1.500.000 | 2023 | Details |
Tackling limitations of future relevant thermo-chemical reactions by exploiting the dynamic surface behaviour of complex mixed metal oxides
This project aims to develop dynamic responsive catalysts that adapt their surface structure to enhance activity and stability, overcoming deactivation in catalytic processes through innovative engineering methods.
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Intensified processes for CO2 conversion to sustainable synthetic fuels
The IntensifiedCO2 project aims to revolutionize CO2 conversion to synthetic fuels by integrating two reactors into one, using metallic cobalt catalysts to enhance efficiency and selectivity.
In-depth understanding of multiphase mass transfer in CO2 electrolyzers through application of engineered, ordered reactor components
TRANSCEND aims to revolutionize CO2 electrolyzers by developing an integrated design for improved mass transport, enhancing efficiency and durability for sustainable chemical and fuel production.
Selective CO2 Reduction to CO and Alcohols without Platinum or Noble Group Electrodes
RECALLCO2 aims to develop a stable nickel-based CO2 electrolyzer and innovative catalytic architectures to enhance the selective production of high-energy density alcohols from CO2.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light OlefinsECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy. | EIC Pathfinder | € 2.519.031 | 2023 | Details |
Lab-to-tech transition of the current best low temperature electrolyser technology for CO2 reduction to CO using solar energyThe project aims to develop a containerized CO2 electrolyser unit powered by solar energy to produce valuable chemicals, facilitating commercialization and supporting the European Green Deal's climate goals. | EIC Transition | € 2.373.125 | 2022 | Details |
CO2-hergebruik in een cyclisch carbonaat-Pilot faseHet project richt zich op het opschalen van een innovatieve katalysator voor de productie van cyclisch carbonaat uit onzuivere CO2, met als doel een hoogwaardig elektrolyt voor accu's te ontwikkelen. | Demonstratie... | € 8.367.904 | 2022 | Details |
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and ChemicalsThe project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration. | EIC Pathfinder | € 2.250.500 | 2023 | Details |
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions. | EIC Pathfinder | € 3.229.932 | 2022 | Details |
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light Olefins
ECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy.
Lab-to-tech transition of the current best low temperature electrolyser technology for CO2 reduction to CO using solar energy
The project aims to develop a containerized CO2 electrolyser unit powered by solar energy to produce valuable chemicals, facilitating commercialization and supporting the European Green Deal's climate goals.
CO2-hergebruik in een cyclisch carbonaat-Pilot fase
Het project richt zich op het opschalen van een innovatieve katalysator voor de productie van cyclisch carbonaat uit onzuivere CO2, met als doel een hoogwaardig elektrolyt voor accu's te ontwikkelen.
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
The project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration.
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2
OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions.