NR2F6 Blockade as Adoptive Immune Cell Therapy for Metastatic Melanoma
The NR2F6-AIM project aims to enhance adoptive cell therapy for metastatic melanoma by inhibiting NR2F6, improving immune response and treatment feasibility through rapid, cost-effective methods.
Projectdetails
Introduction
Melanoma cases and deaths are expected to increase in the coming years, representing a significant burden for the European economy and healthcare system. Metastatic melanoma (MM) is the most serious form of skin cancer and is characterised by uncontrolled metastatic spread of melanocytes to distant sites.
Clinical Challenges
Although standard treatments exist, significant clinical challenges remain, resulting in limited response and high MM recurrence rates. As a result of these limited treatment options, the quality of life of MM patients is dramatically compromised.
Emerging Therapies
Emerging immunotherapies, such as adoptive cell therapy (ACT), are promising but have significant obstacles, including:
- Long manufacturing times
- High costs
- Rapid exhaustion of infused cells due to the tumour immune microenvironment (TIME)
Research Overview
Research in Gottfried Baier's lab has identified a unique way to effectively stimulate the immune system with an ACT by inhibiting NR2F6, an intrinsic immune checkpoint of T lymphocytes. This is done through our NR2F6 blockade-based adoptive immune cell therapy for metastatic melanoma (NR2F6-AIM) approach, where T cells are engineered for enhanced immune fitness prior to infusion.
Treatment Approach
This greatly sensitises the patient's immune system to currently available immune checkpoint inhibitor therapy (ICT). This approach will permit us to deliver a combinatorial treatment that can overcome TIME immunosuppression, providing curative potential against MM.
Methodology
NR2F6-AIM will block NR2F6 by a non-viral, time-boxed gene silencing through a synthetic small interfering RNA (siRNA) transfection method. This method will allow us to overcome therapeutic manufacturing hurdles through a one-day in-hospital preparation of the ACT.
Validation and Strategy
NR2F6-AIM will verify and optimise the technology in relevant in vivo and ex vivo study models to validate the potential of this innovative ACT. It will also develop and execute an IP strategy and a commercial feasibility analysis to enter the MM market.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- MEDIZINISCHE UNIVERSITAT INNSBRUCKpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeted Immunocytokines by CaGing and local ReleaseThis project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy. | ERC Proof of... | € 150.000 | 2025 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC Proof of... | € 150.000 | 2023 | Details |
Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune responseThis project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer. | ERC Proof of... | € 150.000 | 2025 | Details |
Treating Liver MetastasisThis project aims to enhance immunotherapy for colorectal liver metastases by targeting innate immune responses, utilizing advanced models to identify key cellular interactions and functions. | ERC Synergy ... | € 10.180.358 | 2024 | Details |
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid TumorsCAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies. | ERC Proof of... | € 150.000 | 2022 | Details |
Targeted Immunocytokines by CaGing and local Release
This project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy.
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune response
This project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer.
Treating Liver Metastasis
This project aims to enhance immunotherapy for colorectal liver metastases by targeting innate immune responses, utilizing advanced models to identify key cellular interactions and functions.
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors
CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Melanoom specifieke NK cel therapieDit project onderzoekt de ontwikkeling van patiënt specifieke NK-celtherapie om hindernissen bij de behandeling van melanoom met NK-cellen te overwinnen. | Mkb-innovati... | € 20.000 | 2021 | Details |
RESTORING IMMUNITY CONTROL OF GI CANCERSTIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization. | EIC Transition | € 2.007.750 | 2025 | Details |
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell ReprogrammingThe Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization. | EIC Transition | € 2.480.367 | 2025 | Details |
Controlling immunity with small molecules for a better therapyThe IMMUNOCON project aims to advance EMT-224, an immune activator, towards clinical trials to improve treatment options for late-stage colorectal cancer by converting 'cold' tumors into 'hot' ones. | EIC Transition | € 2.484.700 | 2025 | Details |
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineeringThe project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer. | EIC Accelerator | € 2.434.790 | 2025 | Details |
Melanoom specifieke NK cel therapie
Dit project onderzoekt de ontwikkeling van patiënt specifieke NK-celtherapie om hindernissen bij de behandeling van melanoom met NK-cellen te overwinnen.
RESTORING IMMUNITY CONTROL OF GI CANCERS
TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming
The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.
Controlling immunity with small molecules for a better therapy
The IMMUNOCON project aims to advance EMT-224, an immune activator, towards clinical trials to improve treatment options for late-stage colorectal cancer by converting 'cold' tumors into 'hot' ones.
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineering
The project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer.