Neoantigen Identification with Dendritic Cell Reprogramming

The NeoIDC project aims to revolutionize cancer immunotherapy by using cDC1 reprogramming to identify immunogenic neoantigens and TCRs for developing effective vaccines and adoptive T cell therapies.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

In cancer, genetic mutations result in the production of tumor neoantigens restrictively expressed in transformed cells and serve as ideal molecular targets for cancer vaccines and adoptive T cell therapies. However, available methods for the identification of clinically relevant neoantigens driving potent anti-tumor immunity are highly inefficient. Thus, there is an urgent need for innovative solutions to identify powerful immunogenic neoantigens to unlock the full potential of immunotherapy and treat currently untreatable cancers.

NeoIDC Platform Vision

The NeoIDC platform has the radical vision to use the type 1 conventional dendritic cell (cDC1) reprogramming technology, arising from the ERC-funded project TrojanDC, to directly identify highly immunogenic tumor neoantigens and neoantigen-specific T cell receptors (TCRs) for the development of powerful cancer vaccines and adoptive T cell therapies.

Methodology

To achieve this, we will:

  1. Identify tumor peptides presented on MHC class I and II by cDC1-reprogrammed cancer cells and validate immunogenicity in vivo.
  2. Expand neoantigen-specific T cells by co-culture with reprogrammed cancer cells, sequence TCRs, and link to cognate neoantigens.

This will facilitate the generation of potent cancer vaccines and tumor-reactive T cells for adoptive transfer.

Collaboration and Commercialization

Experimental activities with collaborators and clinicians will be coupled with exploitation plans, including partnership with Asgard Therapeutics, ensuring commercialization through the generation of novel IP, broad and targeted dissemination, and the establishment of a new start-up company.

Conclusion

NeoIDC combines cDC1s' antigen processing and presenting abilities with the unique mutational profile of cancer cells to enable the direct identification of immunogenic neoantigens and cognate TCRs. Ultimately, this project will enable the development of the next generation of neoantigen-based vaccines and adoptive T cell therapies and will set the stage for a new era of safe, personalized, and effective cancer immunotherapies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-4-2023
Einddatum30-9-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • LUNDS UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Driving tumour antigen presentation by RNA-mediated transdifferentiation

DART aims to develop RNA-mediated reprogramming of tumor cells into antigen-presenting cells to enhance anti-tumor immunity and create a scalable immunotherapy solution.

€ 150.000
ERC Proof of...

Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy

ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.

€ 150.000
ERC Proof of...

C- and N-terminal Epitope Conjugate immune Cell Targeted Vaccines

CNECT-VAX aims to validate a novel cancer vaccine platform using nanobodies for targeted dendritic cell activation to enhance immune responses and improve treatment efficacy.

€ 150.000
ERC Starting...

Polyclonal anti-tumor immunity by engineered human T cells

This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.

€ 1.812.500
ERC Advanced...

Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies

The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.

€ 2.500.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Functional chemical reprogramming of cancer cells to induce antitumor immunity

The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.

€ 2.966.695
EIC Transition

Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming

The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.

€ 2.480.367
EIC Transition

RESTORING IMMUNITY CONTROL OF GI CANCERS

TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.

€ 2.007.750
Mkb-innovati...

PRO CellecT

Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.

€ 20.000
EIC Transition

Pre-clinical validation and demonstration of PeptiCHIP: an immunopurification microfluidic device and software for (neo)antigen identification and prioritization

Valo Therapeutics is developing PeptiCHIP, a microfluidic device and algorithm to efficiently identify neoantigens for personalized cancer immunotherapy, enhancing patient response rates.

€ 2.226.280