Nanoengineered particles for enhanced cancer radiotherapy

ENCANT aims to enhance cancer radiotherapy using biocompatible high-Z nanoparticles to improve treatment precision, reduce radiation dose, and minimize adverse effects for better patient outcomes.

Subsidie
€ 150.000
2025

Projectdetails

Introduction

Current cancer research efforts are focused on obtaining targeted therapies, with greater precision, that lead to improved patient survival, with fewer adverse effects to ensure a better quality of life. ENCANT (nanoengineered particles for ENhanced CANcer radioTherapy) will contribute to this aim by developing new therapeutic agents based on biocompatible nanoparticles bearing high atomic number (Z) elements, which will enhance external beam radiotherapy (EBRT) effect on cancer tissue.

This will allow the use of a lower radiation dose, consequently lowering adverse effects related to radiotherapy lack of specificity.

Physicochemical Properties

The physicochemical properties of the nanoparticles (NPs) can be rationally designed according to different needs.

  • NPs will be functionalized to increase their blood circulation time.
  • They will facilitate their accumulation in the tumoural tissue.

In Vivo Testing

NPs will be tested in vivo to describe:

  1. Toxicity ranges
  2. Targeting efficiency
  3. Their therapeutic effect with external beam radiotherapy using in vivo cancer models.

Focus and Adaptability

ENCANT will initially focus on high-Z NPs for prostate cancer (PC).

Nevertheless, their adaptability should allow for use in other tumour types, thus expanding their range of application.

Conclusion

ENCANT aims to improve and expand oncology treatment options available to cancer patients, thus providing them with a more personalized treatment.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2025
Einddatum30-6-2026
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
  • FUNDACIO PRIVADA INSTITUT D'INVESTIGACIO ONCOLOGICA DE VALL-HEBRON (VHIO)

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trials

This project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells.

€ 1.948.125
ERC Proof of...

Targeted nanohorns for lithium neutron capture therapy

TARLIT aims to enhance neutron capture therapy for cancer by using nanoparticles to deliver enriched lithium compounds, improving treatment precision and efficacy against tumors.

€ 150.000
ERC Proof of...

Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune response

This project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer.

€ 150.000
ERC Proof of...

Remotely actuated re-shaped nanocarriers for tumour targeting

Developing remotely actuated, anisotropic metal/polymer hybrid nanoparticles for targeted drug delivery in cancer to enhance therapeutic efficacy and minimize side effects.

€ 150.000
ERC Starting...

Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapies

This project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations.

€ 1.844.248

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach

PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.

€ 2.740.675
EIC Pathfinder

Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.

NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy.

€ 5.972.875
EIC Transition

Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid Tumours

ScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027.

€ 2.499.911
EIC Pathfinder

A revolutionary cell programming platform based on the targeted nano-delivery of a transposon gene editing system

The NANO-ENGINE project aims to develop an affordable, scalable, and safe DNA-based in vivo cell programming technology using Targeted Nanoparticles to enhance accessibility of cell therapies for various diseases.

€ 2.988.377
Mkb-innovati...

NPC Auto-Immuun

Dit project ontwikkelt een innovatieve analysetechniek om de effectiviteit van NanoParticle Conjugates voor de behandeling van auto-immuunziekten te onderzoeken via bloedanalyse.

€ 20.000