MUlti-spectral Scattering matrix for Enhanced skin imaging
The ERC REMINISCENCE project developed the DeepInsight microscope, enabling advanced non-invasive 3D imaging for early melanoma detection and skin disease analysis, with plans for commercialization.
Projectdetails
Introduction
During the ERC REMINISCENCE project, we developed a new microscope whose performances exceed our initial expectations. Based on a reflection matrix approach of wave imaging, this device called DeepInsight provides an unprecedented imaging performance.
Imaging Capabilities
It allows non-invasive, label-free, real-time, and three-dimensional imaging of tissues with a 1 mm penetration depth at a 500 nm resolution.
Quantitative Imaging
Beyond the structural information provided by standard reflectivity images, it also enables quantitative imaging of tissues by mapping biomarkers such as:
- The refractive index
- Tissue dynamics
- Scattering strength
This patented innovation thus represents a paradigm shift in label-free microscopy.
Applications in Dermatology and Cosmetics
In the framework of this project, we want to investigate its extremely promising potential for the dermatology and cosmetics industry. Our proposed solution overcomes the fundamental limitations of existing microscopes (confocal / OCT) in terms of:
- Penetration depth
- Resolution
- 3D frame rate
Early Detection of Melanoma
It will be a turning point for the early detection of melanoma, which remains a blind spot for current technologies.
Non-Invasive Angiography
Beyond this specific problem, its real-time capabilities will be exploited for non-invasive angiography in order to identify subsurface vascular and structural features known to be associated with numerous skin diseases.
Future Plans
Following the PoC project, we plan to establish a start-up company to further develop the microscope and market it to hospitals and the cosmetics industry.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 31-8-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced X-ray Energy-sensitive Microscopy for Virtual HistologyThis project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer MonitoringDevelop and commercialize a label-free interferometric phase microscopy device with AI for cost-effective cancer diagnosis and monitoring via liquid biopsies. | ERC Proof of... | € 150.000 | 2023 | Details |
A light-efficient microscope for fast volumetric imaging of photon starved samplesLowLiteScope aims to revolutionize bioluminescence microscopy by using AI-driven light field techniques for high-resolution 3D imaging of biological samples, enhancing research capabilities in life sciences. | ERC Proof of... | € 150.000 | 2024 | Details |
Next-gen fluorescence imaging for research and theranosticsThe project aims to develop the TriScanner, a novel fluorescence microscope that enhances imaging speed, resolution, and sensitivity for multicellular systems in research and clinical applications. | ERC Proof of... | € 150.000 | 2023 | Details |
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet MicroscopyThis project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs. | ERC Advanced... | € 2.293.558 | 2022 | Details |
Advanced X-ray Energy-sensitive Microscopy for Virtual Histology
This project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions.
Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer Monitoring
Develop and commercialize a label-free interferometric phase microscopy device with AI for cost-effective cancer diagnosis and monitoring via liquid biopsies.
A light-efficient microscope for fast volumetric imaging of photon starved samples
LowLiteScope aims to revolutionize bioluminescence microscopy by using AI-driven light field techniques for high-resolution 3D imaging of biological samples, enhancing research capabilities in life sciences.
Next-gen fluorescence imaging for research and theranostics
The project aims to develop the TriScanner, a novel fluorescence microscope that enhances imaging speed, resolution, and sensitivity for multicellular systems in research and clinical applications.
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet Microscopy
This project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGINGThe 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe. | EIC Pathfinder | € 2.999.999 | 2025 | Details |
Het MICHRO project: Het Medical Imaging Chromodynamics OnderzoekstrajectHet project ontwikkelt een multispectrale camera voor snelle, hoogwaardige fluorescentie microscopie ter verbetering van immuno-oncologische analyses. | Mkb-innovati... | € 20.000 | 2022 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platformThe NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology. | EIC Transition | € 2.489.162 | 2023 | Details |
Real-time multi-spectral imaging for accurate detection of cancerous tissue in endoscopic surgeryThericon is developing an rMSI platform to enhance endoscopic cancer surgery by providing multi-parametric imaging for better tissue differentiation and reducing cancer recurrence, seeking funding for market launch in 2024. | EIC Accelerator | € 2.500.000 | 2022 | Details |
NEW TECHNOLOGY FOR 1 MICRON RESOLUTION BIOMEDICAL IMAGING
The 1MICRON project aims to revolutionize cancer detection by developing high-resolution, integrated x-ray sensors for immediate surgical feedback, potentially saving over 100,000 treatments annually in Europe.
Het MICHRO project: Het Medical Imaging Chromodynamics Onderzoekstraject
Het project ontwikkelt een multispectrale camera voor snelle, hoogwaardige fluorescentie microscopie ter verbetering van immuno-oncologische analyses.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
Real-time multi-spectral imaging for accurate detection of cancerous tissue in endoscopic surgery
Thericon is developing an rMSI platform to enhance endoscopic cancer surgery by providing multi-parametric imaging for better tissue differentiation and reducing cancer recurrence, seeking funding for market launch in 2024.