Modeling how pre-existing TCR clones affect vaccine-induced T-cell responses
The project aims to develop a computational tool to predict vaccine-induced immune responses by analyzing T-cell receptor repertoires before and after vaccination.
Projectdetails
Introduction
T-cells are increasingly recognized to be pivotal actors in the development of vaccine-induced immune responses. Through their T-cell receptor (TCR) on their cell surface, T-cells can recognize antigens derived from pathogens or vaccines. The strength of the interaction between the TCRs and the vaccine antigens will direct the T-cell dynamics after vaccination.
Project Overview
In this project, we will analyze the TCR repertoires from participants from three distinct vaccination cohorts prior to vaccination and after vaccination.
Computational Tool Development
We will develop a computational tool (later to be transformed into a software package) that will allow us to accurately predict, by using the baseline TCR data alone, which vaccinees will develop a robust immune response after vaccination.
Potential Impact
This tool holds the potential to have an important impact on different aspects and actors of vaccinology, ranging from the vaccine industry to public health researchers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 31-5-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT ANTWERPENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computational scanning for responding clonotypes in immune repertoiresRESPOND is a user-friendly platform that integrates various algorithms to efficiently identify immune clonotypes for targeted vaccine and therapeutic development, reducing costs and time in drug discovery. | ERC Proof of... | € 150.000 | 2025 | Details |
Polyclonal anti-tumor immunity by engineered human T cellsThis project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes. | ERC Starting... | € 1.812.500 | 2022 | Details |
Diagnostic model and assay for personalized vaccineThis project aims to develop a diagnostic assay to predict influenza vaccine responsiveness in immunocompromised patients using identified biomarkers and machine learning models, enhancing personalized vaccination strategies. | ERC Proof of... | € 150.000 | 2025 | Details |
Molecular mimicry as a key parameter shaping T cell immunityThe MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Activation and switch of fates in T lymphocytes.This project aims to model the fate choices of naïve and memory CD8+ T cells using experimental immunology and systems biology to enhance vaccine design and improve responses to infections and cancer. | ERC Consolid... | € 2.625.000 | 2025 | Details |
Computational scanning for responding clonotypes in immune repertoires
RESPOND is a user-friendly platform that integrates various algorithms to efficiently identify immune clonotypes for targeted vaccine and therapeutic development, reducing costs and time in drug discovery.
Polyclonal anti-tumor immunity by engineered human T cells
This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.
Diagnostic model and assay for personalized vaccine
This project aims to develop a diagnostic assay to predict influenza vaccine responsiveness in immunocompromised patients using identified biomarkers and machine learning models, enhancing personalized vaccination strategies.
Molecular mimicry as a key parameter shaping T cell immunity
The MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights.
Activation and switch of fates in T lymphocytes.
This project aims to model the fate choices of naïve and memory CD8+ T cells using experimental immunology and systems biology to enhance vaccine design and improve responses to infections and cancer.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
From A to BCR: B-Cell Receptor Repertoire Profiling for Antibody DevelopmentDit project ontwikkelt een geïntegreerde B-cel repertoire sequentiëringstechnologie om sneller en beter antilichamen te identificeren voor nieuwe geneesmiddelen en therapieën tegen kanker. | Mkb-innovati... | € 153.020 | 2020 | Details |
From A to BCR: B-Cell Receptor Repertoire Profiling for Antibody Development
Dit project ontwikkelt een geïntegreerde B-cel repertoire sequentiëringstechnologie om sneller en beter antilichamen te identificeren voor nieuwe geneesmiddelen en therapieën tegen kanker.