Highly deformable ceramic composites for ceramic forging and high temperature applications
This project aims to enhance ceramic toughness and manufacturability through nanometric strain hardening, enabling new applications in forging and high-temperature structural components.
Projectdetails
Introduction
Despite their incredible durability, ceramics used are hampered by two limitations: they are difficult to manufacture compared with continuous manufacturing of metals and polymers, and they are brittle, even at relatively high temperatures. Both these limitations stem from their low fracture toughness and the absence of plastic deformation mechanisms.
Project Goals
One of the goals of my ERC SSTEEL was to find a way to toughen ceramic composites by introducing strain hardening mechanisms at the nanometric scale. We succeeded and produced a ceramic composite that shows plastic deformation of at least 14% and toughness two orders of magnitude higher, in terms of energy release rate, than conventional structural ceramics at temperatures around 1000°C.
Applications
These temperatures are close to the ones used to hot forge steel and thus open two new application avenues for these deformable ceramics:
- Enabling ceramics forging, using preform to produce complex shapes in a quick and simple way.
- Using this high toughness to produce structural ceramics for high-temperature applications, in burners or even engines.
Proof-of-Concept Project Objectives
The goal of this Proof-of-Concept project is three-fold:
- To work on the ceramic composition to lower the temperature needed for deformation or improve their high-temperature mechanical resistance.
- To develop the forging of ceramics beyond the initial results to showcase the capabilities to future clients.
- To start testing the continuous processing of these composites.
Conclusion
Succeeding in these goals holds promises for cheaper and faster manufacturing of complex-shaped ceramic parts, opening a wealth of potential applications previously limited to metals or polymers, as well as developing more ductile high-temperature structures.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2025 |
Einddatum | 30-11-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mechanics-tailored Functional Ceramics via DislocationsMECERDIS aims to enhance the functionality and toughness of advanced ceramics by using mechanics-guided design and external fields to manipulate dislocations for next-generation applications. | ERC Starting... | € 1.499.250 | 2023 | Details |
Bulk Nanostructured Tungsten for Extreme EnvironmentsThe BulkNanoWe2 project aims to industrialize nanocrystalline tungsten production through efficient manufacturing, enhancing strength and toughness for extreme environments while addressing sourcing challenges. | ERC Proof of... | € 150.000 | 2024 | Details |
Innovative and sustainable carbon-based composites for high temperature sensible thermal energy storageSTOREHEAT aims to develop and optimize Calcium Carbide-based Composites for efficient high-temperature heat storage, utilizing sustainable resources to enhance energy recovery from industrial waste heat. | ERC Advanced... | € 2.494.415 | 2025 | Details |
Ultimate fracture toughness through thickness engineeringThe HAPI project aims to enhance fracture toughness in critical metallic components by optimizing plate thickness and developing ultra-tough metal laminates, potentially reducing structural weight by up to five times. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Auxetic Cementitious Composites by 3D PrintingACC-3D aims to develop innovative ductile cementitious composites using auxetic reinforcement to enhance energy absorption and structural resilience before cracking occurs. | ERC Starting... | € 1.498.201 | 2022 | Details |
Mechanics-tailored Functional Ceramics via Dislocations
MECERDIS aims to enhance the functionality and toughness of advanced ceramics by using mechanics-guided design and external fields to manipulate dislocations for next-generation applications.
Bulk Nanostructured Tungsten for Extreme Environments
The BulkNanoWe2 project aims to industrialize nanocrystalline tungsten production through efficient manufacturing, enhancing strength and toughness for extreme environments while addressing sourcing challenges.
Innovative and sustainable carbon-based composites for high temperature sensible thermal energy storage
STOREHEAT aims to develop and optimize Calcium Carbide-based Composites for efficient high-temperature heat storage, utilizing sustainable resources to enhance energy recovery from industrial waste heat.
Ultimate fracture toughness through thickness engineering
The HAPI project aims to enhance fracture toughness in critical metallic components by optimizing plate thickness and developing ultra-tough metal laminates, potentially reducing structural weight by up to five times.
Auxetic Cementitious Composites by 3D Printing
ACC-3D aims to develop innovative ductile cementitious composites using auxetic reinforcement to enhance energy absorption and structural resilience before cracking occurs.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Ontwikkeling van een nieuw type keramische matrix composiet dat bestand is tegen zeer hoge temperaturen, oxidatie en trekkrachten.Het project richt zich op het ontwikkelen van flexibele SiC-vezels voor keramische matrixcomposieten, om de efficiëntie in luchtvaart en energie te verhogen en CO2-emissies te reduceren. | Mkb-innovati... | € 199.572 | 2020 | Details |
High-pressure carbon composite hydraulic cylindersDit project onderzoekt de haalbaarheid van hogedruk carbon composiet hydraulische cilinders voor de maritieme markt. | Mkb-innovati... | € 20.000 | 2020 | Details |
C2MDit project richt zich op het ontwikkelen van een verbindingsproces voor keramiek composiet materialen (CMCs) aan metalen, om de integratie in raket- en satelliettechnologie te vergemakkelijken en prestaties te verbeteren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Ceramic paste for 3D-printable bone implantsZ3DLABS en Delft Solids Solutions ontwikkelen een 3D printbare keramische pasta voor patiëntspecifieke, bio-compatibele botimplantaten met een langere levensduur en lagere behandelkosten. | Mkb-innovati... | € 195.510 | 2020 | Details |
HAALBAARHEID 3D-PRINTEN KERAMIEK (SI3N4)Dit project onderzoekt de technische en economische haalbaarheid van 3D-printen met Si3N4 om nauwkeurige keramische stages voor de semiconductorindustrie te ontwikkelen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Ontwikkeling van een nieuw type keramische matrix composiet dat bestand is tegen zeer hoge temperaturen, oxidatie en trekkrachten.
Het project richt zich op het ontwikkelen van flexibele SiC-vezels voor keramische matrixcomposieten, om de efficiëntie in luchtvaart en energie te verhogen en CO2-emissies te reduceren.
High-pressure carbon composite hydraulic cylinders
Dit project onderzoekt de haalbaarheid van hogedruk carbon composiet hydraulische cilinders voor de maritieme markt.
C2M
Dit project richt zich op het ontwikkelen van een verbindingsproces voor keramiek composiet materialen (CMCs) aan metalen, om de integratie in raket- en satelliettechnologie te vergemakkelijken en prestaties te verbeteren.
Ceramic paste for 3D-printable bone implants
Z3DLABS en Delft Solids Solutions ontwikkelen een 3D printbare keramische pasta voor patiëntspecifieke, bio-compatibele botimplantaten met een langere levensduur en lagere behandelkosten.
HAALBAARHEID 3D-PRINTEN KERAMIEK (SI3N4)
Dit project onderzoekt de technische en economische haalbaarheid van 3D-printen met Si3N4 om nauwkeurige keramische stages voor de semiconductorindustrie te ontwikkelen.