High-throughput combinatory drugs testing on in vitro 3D cells model platform
The project aims to develop a microfluidic platform for high-throughput screening of drug combinations in 3D cultures to enhance drug discovery and identify synergistic therapies for breast cancer.
Projectdetails
Introduction
Drug combinations can lead to the discovery of novel drugs by increasing efficacy or lowering toxicity through synergy. This can boost existing drugs, rescue drug candidates, and accelerate drug discovery for yet poorly addressed diseases. However, predicting synergy is difficult, and finding synergies requires high-throughput screening (HTS) in advanced cell models. Current solutions propose either HTS in 2D cell cultures or low throughput assays in 3D cell cultures, but not both.
Technology Development
On the basis of a technology developed in the ERC-funded AbioEvo project, we devised an innovative microfluidic platform for 3D culture and HTS of drug combinations.
Advantages of the Platform
- Miniaturization: Densifies routine 3D assays, resulting in a throughput increase of 10 to 100 times.
- Fluidic Automation: Reduces liquid handling 500 times for a 100x100 drug library at a 10-point dose-response combinatorial screening.
- Improved Predictability: 3D culture models better predict later physiological responses, thus increasing the success probability of downstream drug development stages.
We have shown dose-response measurements of 144 antibiotic combinations on bacteria on a single chip.
Project Objectives
In this POC, we aim to demonstrate the applicability of our technology to human cells and benchmark it based on existing screens for breast cancer cells.
Key Activities
- Adapt the cell culture conditions and data analysis.
- Perform market analysis.
- Examine industrialization feasibility.
This will put us in a position to create a spin-off to reach the preclinical drug screening market and identify the most promising therapeutic areas.
Conclusion
Indeed, the technology has the potential to screen for synergistic drug combinations at an earlier stage of the drug discovery process (thanks to miniaturization and automation) while providing a more reliable cellular response for later stages (thanks to 3D culture).
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 30-6-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- ECOLE SUPERIEURE DE PHYSIQUE ET DECHIMIE INDUSTRIELLES DE LA VILLE DEPARISpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy. | ERC Proof of... | € 150.000 | 2024 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Learning and modeling the molecular response of single cells to drug perturbationsDeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings. | ERC Advanced... | € 2.497.298 | 2023 | Details |
3D screening system to cultivate tissue and automatically stimulate and quantify its mechanical propertiesThe project aims to develop the TissMec system for automated 3D human tissue creation and screening to expedite drug candidate evaluation and improve the drug development process. | ERC Proof of... | € 150.000 | 2024 | Details |
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffoldsThis project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing. | ERC Proof of... | € 150.000 | 2023 | Details |
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment
3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy.
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Learning and modeling the molecular response of single cells to drug perturbations
DeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings.
3D screening system to cultivate tissue and automatically stimulate and quantify its mechanical properties
The project aims to develop the TissMec system for automated 3D human tissue creation and screening to expedite drug candidate evaluation and improve the drug development process.
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds
This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bringing 3D cardiac tissues to high throughput for drug discovery screensDeveloping a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability. | EIC Transition | € 1.457.500 | 2023 | Details |
Multi-organ toxicity and efficacy test platform for Personalized medicine & Drug developmentCherry Biotech aims to revolutionize drug development and personalized medicine by providing a patented 3D cell culture platform that enhances predictability and reduces reliance on animal testing. | EIC Accelerator | € 2.499.831 | 2024 | Details |
Dypha: adding the dimension of time to cell cultureThe δypha System aims to enhance drug development by providing a plug-and-play microfluidic adaptor for 96 well plates, enabling precise control of fluid kinetics in cell culture models. | EIC Transition | € 2.499.625 | 2024 | Details |
High Throughput Cell contractility system for rapid drug evaluationCytocypher en Optics11 ontwikkelen samen een prototype van een high throughput screening systeem voor het functioneel meten van hartspiercellen, ter bevordering van cardiologisch onderzoek. | Mkb-innovati... | € 193.900 | 2015 | Details |
LUCERO BIO: Smart Optofluidic Isolation of Spheroids for Early-Stage Drug DiscoveryLucero aims to enhance drug screening by developing a scalable 3D cell-handling platform using microfluidics and AI, enabling personalized medicine and improving treatment efficacy in pharmaceuticals. | EIC Transition | € 1.298.712 | 2023 | Details |
Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
Multi-organ toxicity and efficacy test platform for Personalized medicine & Drug development
Cherry Biotech aims to revolutionize drug development and personalized medicine by providing a patented 3D cell culture platform that enhances predictability and reduces reliance on animal testing.
Dypha: adding the dimension of time to cell culture
The δypha System aims to enhance drug development by providing a plug-and-play microfluidic adaptor for 96 well plates, enabling precise control of fluid kinetics in cell culture models.
High Throughput Cell contractility system for rapid drug evaluation
Cytocypher en Optics11 ontwikkelen samen een prototype van een high throughput screening systeem voor het functioneel meten van hartspiercellen, ter bevordering van cardiologisch onderzoek.
LUCERO BIO: Smart Optofluidic Isolation of Spheroids for Early-Stage Drug Discovery
Lucero aims to enhance drug screening by developing a scalable 3D cell-handling platform using microfluidics and AI, enabling personalized medicine and improving treatment efficacy in pharmaceuticals.