Directed Orchestration of Microfluidic Environments for guided Self-organisation
The project develops the DOMES microfluidic platform to study environmental impacts on kidney organogenesis, enhancing understanding of congenital anomalies through advanced 3D cell culture models.
Projectdetails
Introduction
In Europe, 263 per 10,000 pregnancies are diagnosed with a fetal congenital anomaly. Congenital anomalies, also referred to as birth defects, are defined as structural or functional disorders that occur during fetal development and are inherited, and/or caused by environmental factors.
Problem Statement
Unfortunately, the link between environmental factors, such as drugs, toxins, or other chemicals, and the manifestation of these multifactorial disorders is poorly understood. To identify environmental factors affecting tissue and organogenesis and study their pathogenic mechanisms, new 3D in vitro models with reliable and highly reproducible architecture are urgently needed.
Current Limitations
None of the current cell culture systems available can provide the controlled environment needed to sufficiently guide the self-organization process of stem cell-based 3D in vitro models.
Solution: DOMES Platform
Our new microfluidic platform, DOMES, is the first of its kind, combining precise control over morphogenetic processes with standardized and user-friendly handling. In this project, we will exemplarily focus on congenital diseases of the kidney, in particular the collecting duct system.
Research Focus
We will analyze on-chip the impact of specific environmental compounds, such as drugs and endocrine disruptors, on the branching morphogenesis of the collecting duct.
Broader Applications
DOMES is a product family of microfluidic 3D cell culture chips which will allow the control and study not only of kidney organoids, but of other 3D cell models including:
- Lung organoids
- Neural organoids
- Gut organoids
- Embryoid bodies
This is the first instance of a cell culture platform allowing direct orchestration of the microfluidic environment for guiding self-organization, symmetry breaking, and organogenesis. It represents a paradigm shift in researchers' ability to study the development of organs and their congenital anomalies in vitro.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 30-11-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT MAASTRICHTpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D PluripotencyOriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis. | ERC Starting... | € 1.499.633 | 2024 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular DiseaseThe 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health. | ERC Starting... | € 1.496.395 | 2022 | Details |
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffoldsThis project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing. | ERC Proof of... | € 150.000 | 2023 | Details |
Feedback-control of the Microenvironment: Modular Organ-on-Chip Technology to elucidate the role of Neurovascular Stress in SchizophreniaCHIPzophrenia aims to develop a feedback-controlled organ-on-chip system to study nitrosative stress effects on the blood-brain barrier, enhancing in-vitro research for schizophrenia and related disorders. | ERC Starting... | € 1.499.375 | 2024 | Details |
Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D Pluripotency
OriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis.
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds
This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.
Feedback-control of the Microenvironment: Modular Organ-on-Chip Technology to elucidate the role of Neurovascular Stress in Schizophrenia
CHIPzophrenia aims to develop a feedback-controlled organ-on-chip system to study nitrosative stress effects on the blood-brain barrier, enhancing in-vitro research for schizophrenia and related disorders.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multi-organ toxicity and efficacy test platform for Personalized medicine & Drug developmentCherry Biotech aims to revolutionize drug development and personalized medicine by providing a patented 3D cell culture platform that enhances predictability and reduces reliance on animal testing. | EIC Accelerator | € 2.499.831 | 2024 | Details |
IDEFIX Multiorgan toxicity and efficacy test platformCherry Biotech's IDEFIX project aims to revolutionize preclinical drug testing by developing a customizable organ-on-chip platform that mimics human multiorgan physiology, enhancing efficacy and toxicity predictions. | EIC Transition | € 2.496.073 | 2022 | Details |
Supervised morphogenesis in gastruloidsThis project aims to develop advanced gastruloid technology to create larger, vascularized organ models that better mimic human physiology, reducing reliance on animal experiments. | EIC Pathfinder | € 3.337.725 | 2022 | Details |
Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.Bio-HhOST aims to create bio-hybrid materials with living and artificial cells for dynamic communication, enhancing tissue modeling and reducing animal use in drug research. | EIC Pathfinder | € 1.225.468 | 2024 | Details |
Multi-organ toxicity and efficacy test platform for Personalized medicine & Drug development
Cherry Biotech aims to revolutionize drug development and personalized medicine by providing a patented 3D cell culture platform that enhances predictability and reduces reliance on animal testing.
IDEFIX Multiorgan toxicity and efficacy test platform
Cherry Biotech's IDEFIX project aims to revolutionize preclinical drug testing by developing a customizable organ-on-chip platform that mimics human multiorgan physiology, enhancing efficacy and toxicity predictions.
Supervised morphogenesis in gastruloids
This project aims to develop advanced gastruloid technology to create larger, vascularized organ models that better mimic human physiology, reducing reliance on animal experiments.
Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.
Bio-HhOST aims to create bio-hybrid materials with living and artificial cells for dynamic communication, enhancing tissue modeling and reducing animal use in drug research.