Development of patient “Ossicle” for the personalized modelling of bone-developing cancers and therapeutic testing
OssiGel aims to standardize the formation of human mini-bones in mice for studying bone-developing cancers and testing personalized therapeutics effectively.
Projectdetails
Introduction
Cancer is a huge societal concern representing one death out of six in 2020. The vast majority of existing cancers emerge or ultimately develop in bones: leukemia, lung, breast, prostate, kidney, and bladder. Our bones are thus considered a privileged “harbor” for cancer cells, and this is also associated with a very poor survival prognosis: bone-developing cancers account for approximately 3 million deaths each year.
Treatment Challenges
When treatments are available, they are often poorly effective. Notably, 92% of new therapies successful in preclinical testing fail in clinical trials. This urgently calls for the development of models to study cancer and test therapeutics in a more reliable fashion.
Proposed Solution
Towards this objective, we proposed to engineer human mini-bones in mice to mimic the patient bone-developing cancer condition. These mini-bones (also known as human ossicles) forming in animals consist of miniaturized bone organs composed of the patient's own cells, including cancer cells.
Unique Technology
The human ossicles were thus proposed as a unique technology to study tumor progression and test therapeutics in an advanced and personalized in vivo setting. However, despite substantial promises, the human ossicle model suffers from a lack of standardization. Only 10% of patient-derived cells can successfully form human ossicles. This prevents the large-scale exploitation of human ossicles as a standard model to study bone-developing cancers and establish tailored treatments.
OssiGel Technology
We propose OssiGel as a technology offering the standardized and reproducible formation of human ossicles. OssiGel consists of a cell-secreted gel, the production of which is ensured by a dedicated human cell line.
Formation Process
Mixing isolated patient cells with OssiGel in vitro restores their capacity to form human ossicles. By injecting the OssiGel/patient-cells mixture in the back of mice, we achieve the successful formation of human ossicles in vivo (Fig. 1).
Applications
The resulting patient-derived bones can then be used to study cancer development and for the personal testing/selection of drugs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of a lung METAstasis-on-a-CHIP model for osteosarcoma as a biomimetic testing platform for drug discovery and therapeutic innovationMETA-CHIP aims to develop a lung metastasis-on-a-chip model for osteosarcoma to enhance drug development and predict patient responses to therapies in real-time. | ERC Starting... | € 1.499.884 | 2024 | Details |
BioBone: Bioactive Hydrogel-based Implants to Induce Bone RegenerationThe project aims to enhance bone regeneration after tumor resection by developing 3D-printed porous titanium implants integrated with bioactive materials, improving patient outcomes and reducing complications. | ERC Proof of... | € 150.000 | 2024 | Details |
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug PenetrationThis project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes. | ERC Starting... | € 1.499.693 | 2024 | Details |
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy. | ERC Proof of... | € 150.000 | 2024 | Details |
Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticlesThe NutriBone project aims to develop a patented self-feeding bone implant that enhances long-term viability and reduces failure rates for large bone defects through glycogen-based glucose release. | ERC Proof of... | € 150.000 | 2024 | Details |
Development of a lung METAstasis-on-a-CHIP model for osteosarcoma as a biomimetic testing platform for drug discovery and therapeutic innovation
META-CHIP aims to develop a lung metastasis-on-a-chip model for osteosarcoma to enhance drug development and predict patient responses to therapies in real-time.
BioBone: Bioactive Hydrogel-based Implants to Induce Bone Regeneration
The project aims to enhance bone regeneration after tumor resection by developing 3D-printed porous titanium implants integrated with bioactive materials, improving patient outcomes and reducing complications.
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug Penetration
This project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes.
Development of a high-throughput microplate based device to analyse the patient derived tumour microenvironment
3DTUMOUR aims to enhance drug development success by providing patient-specific 3D bioprinted tumour models for ex vivo testing, improving treatment efficacy and reducing toxicity in cancer therapy.
Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticles
The NutriBone project aims to develop a patented self-feeding bone implant that enhances long-term viability and reduces failure rates for large bone defects through glycogen-based glucose release.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Live Cell Spectroscopy Analysis for Personalised Particle Radiation Therapy of Metastatic Bone CancerBoneOscopy aims to revolutionize metastatic bone cancer treatment by enabling daily monitoring during particle radiotherapy, enhancing personalized care and treatment efficacy. | EIC Pathfinder | € 3.069.321 | 2025 | Details |
Ontwikkelen nieuw middel voor de lokale genezing van botbreukenDit project ontwikkelt een nieuwe formulering van microspheres met groeifactoren voor Demineralized Bone Material (DBM) om de effectiviteit bij moeilijk genezende botbreuken te verbeteren. | Mkb-innovati... | € 194.500 | 2015 | Details |
The Holy Grail in Bone regenerationGreenBone aims to revolutionize bone grafts with a synthetic Rattan wood-based implant that mimics natural bone, enhancing regeneration and targeting the spinal market by 2025. | EIC Accelerator | € 2.458.128 | 2022 | Details |
Live Cell Spectroscopy Analysis for Personalised Particle Radiation Therapy of Metastatic Bone Cancer
BoneOscopy aims to revolutionize metastatic bone cancer treatment by enabling daily monitoring during particle radiotherapy, enhancing personalized care and treatment efficacy.
Ontwikkelen nieuw middel voor de lokale genezing van botbreuken
Dit project ontwikkelt een nieuwe formulering van microspheres met groeifactoren voor Demineralized Bone Material (DBM) om de effectiviteit bij moeilijk genezende botbreuken te verbeteren.
The Holy Grail in Bone regeneration
GreenBone aims to revolutionize bone grafts with a synthetic Rattan wood-based implant that mimics natural bone, enhancing regeneration and targeting the spinal market by 2025.