Decellularised Extracellular Carpets for the Innovative Production of Human Engineered Replicates
This project aims to accelerate the development of cell-derived products using macromolecular crowding, enhancing European biotech competitiveness and creating new jobs and markets.
Projectdetails
Introduction
The major roadblock in the commercialization of cell-derived products is the prolonged ex vivo culture period required to develop them.
Macromolecular Crowding
Macromolecular crowding (MMC), a biophysical phenomenon that increases the kinetics of biochemical reactions and biological processes by several orders of magnitude, allows for the accelerated development of cell-derived products.
Project Objectives
This project will exploit MMC in the development of cell-derived products through:
- Two technical work-packages
- Three commercial work-packages
These efforts aim to increase the international competitiveness of European-based biotech industries and create new employment, markets, and revenue.
Project Duration and Training
This 18-month interdisciplinary and intersectoral project will train one post-doctoral researcher at the forefront of scientific research and technological innovation.
Location
The project will be carried out at University College Dublin, Ireland’s largest university, which is one of Europe’s leading research-intensive universities and in the top 1% of universities worldwide.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Commercial feasibility of a cell-free reactor setup for optimisation of complex enzymatic pathwaysThis project aims to commercialize a continuous stirred tank reactor for optimizing complex enzymatic pathways, enhancing production efficiency and establishing a viable commercialization strategy. | ERC Proof of... | € 150.000 | 2022 | Details |
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffoldsThis project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing. | ERC Proof of... | € 150.000 | 2023 | Details |
Scaling up iPSC Expansion and Differentiation using Recombinant BioemulsionsThe project aims to develop scalable, regulatory-compliant bioemulsions using engineered protein nanosheets for efficient iPSC culture and differentiation, enhancing cell manufacturing and biotech market growth. | ERC Proof of... | € 150.000 | 2025 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Continuous Digitalized Processes for Producing BiopharmaceuticalsDeveloping a Digital Twin-based methodology for continuous, integrated biopharmaceutical production to enhance efficiency and support advanced therapies like mRNA vaccines and personalized medicine. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Commercial feasibility of a cell-free reactor setup for optimisation of complex enzymatic pathways
This project aims to commercialize a continuous stirred tank reactor for optimizing complex enzymatic pathways, enhancing production efficiency and establishing a viable commercialization strategy.
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds
This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.
Scaling up iPSC Expansion and Differentiation using Recombinant Bioemulsions
The project aims to develop scalable, regulatory-compliant bioemulsions using engineered protein nanosheets for efficient iPSC culture and differentiation, enhancing cell manufacturing and biotech market growth.
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Continuous Digitalized Processes for Producing Biopharmaceuticals
Developing a Digital Twin-based methodology for continuous, integrated biopharmaceutical production to enhance efficiency and support advanced therapies like mRNA vaccines and personalized medicine.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Closing the European gap towards a large scale ex vivo platelet production built upon a silk-based scaffold bioreactorThe project aims to upscale ex vivo production of universal platelets using innovative technologies to meet rising demand and ensure compatibility for patients with transfusion reactions. | EIC Transition | € 1.798.152 | 2022 | Details |
Humane mini-breinen voor R&D-toepassingenHet project ontwikkelt een applicatie voor het kweken en analyseren van humane mini-breinen, ter vermindering van dierproeven. | Mkb-innovati... | € 744.000 | 2021 | Details |
Prefabricated Mature Blood Vessels and Tools for Vascularized 3D Cell CultureThe Vasc-on-Demand project aims to develop three innovative products for easy generation of vascularized 3D tissues, enhancing research and drug testing while reducing reliance on animal trials. | EIC Transition | € 2.488.750 | 2024 | Details |
Bringing 3D cardiac tissues to high throughput for drug discovery screensDeveloping a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability. | EIC Transition | € 1.457.500 | 2023 | Details |
AI-powered platform for autologous iPSC manufacturingThe project aims to develop an AI-guided microfluidic device for the standardized, cost-effective mass production of personalized iPSCs to enhance cancer therapies and tissue regeneration. | EIC Pathfinder | € 3.999.225 | 2022 | Details |
Closing the European gap towards a large scale ex vivo platelet production built upon a silk-based scaffold bioreactor
The project aims to upscale ex vivo production of universal platelets using innovative technologies to meet rising demand and ensure compatibility for patients with transfusion reactions.
Humane mini-breinen voor R&D-toepassingen
Het project ontwikkelt een applicatie voor het kweken en analyseren van humane mini-breinen, ter vermindering van dierproeven.
Prefabricated Mature Blood Vessels and Tools for Vascularized 3D Cell Culture
The Vasc-on-Demand project aims to develop three innovative products for easy generation of vascularized 3D tissues, enhancing research and drug testing while reducing reliance on animal trials.
Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
AI-powered platform for autologous iPSC manufacturing
The project aims to develop an AI-guided microfluidic device for the standardized, cost-effective mass production of personalized iPSCs to enhance cancer therapies and tissue regeneration.