Slow excitonics for minimalistic and sustainable photonic and optoelectronic systems
SLOWTONICS aims to revolutionize photonic applications by developing biocompatible, minimalistic organic optoelectronic components for sustainable optical data storage and sensor systems.
Projectdetails
Introduction
Modern technology should not only provide improved efficiency but follow sustainable and minimalistic design principles for an optimized ecological footprint. Photonic applications, e.g., used for information processing in logistics or sensor systems, currently require more and more complex technological solutions to speed up data storage and processing while creating non-recyclable waste. SLOWTONICS aims at providing a paradigm shift based on biocompatible organic optoelectronic and photonic components.
Design Principles
The design principle of digital luminescence developed in my research group combines easily processable excitonic states at long lifetimes (> 1 µs) with a programmable oxygen-based switch of the luminescence to create a unique programmable photonic framework.
Advantages of Organic Semiconductors
By using organic semiconductors, such systems offer:
- A low ecological footprint
- Small material consumption
- A high degree of material tuneability for tailor-made technological solutions
Prototypes and Applications
First prototypes of programmable luminescent tags have demonstrated the potential of this technology yet are missing the requirements for industrial application. Based on the existing expertise of my research group in the fields of organic optoelectronics and spectroscopy of soft luminescence materials, SLOWTONICS will overcome current limitations to realize industry-relevant systems for optical data storage and exchange.
Future Directions
Additionally, we aim to extend the application of digital luminescence towards:
- Luminescent security labels
- Multi-component sensor systems
Once we have developed novel communication components, we will attempt to realize these designs made only from materials found in nature.
Conclusion
This is an essential ultimate step because a world with an ever-growing demand for information requires systems that provide functionality and allow for responsible use. Our approach aims at systems that have material footprints of < 0.1 mg/system, making them truly minimalistic and sustainable.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.264 |
Totale projectbegroting | € 1.999.264 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET DRESDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Sustainable light-emitting devices through control of dynamic dopingThis project aims to develop sustainable light-emitting electrochemical cells (LECs) with efficient emission and minimal resource use by optimizing p-n junction formation and material design. | ERC Advanced... | € 2.500.000 | 2024 | Details |
TIME-Varying Nanophotonics for New Regimes of QED LIGHT-Matter InteractionsTIMELIGHT aims to revolutionize nanophotonics by using time-modulated media to achieve non-Hermitian and non-reciprocal QED effects, enhancing light-matter interactions for quantum technologies. | ERC Starting... | € 1.500.000 | 2024 | Details |
Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal ProcessingATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies. | ERC Synergy ... | € 13.999.999 | 2025 | Details |
Controlling delocalisation and funnelling of excited state energy in the strong coupling regime in molecular systemsThis project aims to enhance organic solar cell efficiency by developing unique molecules for strong light-matter interactions, revealing quantum phenomena for improved energy transport and conversion. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC Starting... | € 1.499.213 | 2023 | Details |
Sustainable light-emitting devices through control of dynamic doping
This project aims to develop sustainable light-emitting electrochemical cells (LECs) with efficient emission and minimal resource use by optimizing p-n junction formation and material design.
TIME-Varying Nanophotonics for New Regimes of QED LIGHT-Matter Interactions
TIMELIGHT aims to revolutionize nanophotonics by using time-modulated media to achieve non-Hermitian and non-reciprocal QED effects, enhancing light-matter interactions for quantum technologies.
Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal Processing
ATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies.
Controlling delocalisation and funnelling of excited state energy in the strong coupling regime in molecular systems
This project aims to enhance organic solar cell efficiency by developing unique molecules for strong light-matter interactions, revealing quantum phenomena for improved energy transport and conversion.
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High-Speed Organic Photonics and OptoElecronicsHiSOPE aims to develop sustainable organic optoelectronic materials and devices for high-speed data transmission, enhancing European industrial autonomy and reducing environmental impact. | EIC Pathfinder | € 3.066.939 | 2024 | Details |
Green materials for neurOMorphic signal processing by organic synaptic transistorsGreenOMorph aims to drastically reduce the environmental impact of electronics by using neuromorphic computing and organic materials, promoting sustainable manufacturing and reducing reliance on critical raw materials. | EIC Pathfinder | € 4.041.021 | 2024 | Details |
RECONFIGURABLE SUPERCONDUTING AND PHOTONIC TECHNOLOGIES OF THE FUTURERESPITE aims to develop a compact, scalable neuromorphic computing platform integrating vision and cognition on a single chip using superconducting technologies for ultra-low power and high performance. | EIC Pathfinder | € 2.455.823 | 2023 | Details |
Green SELf-Powered NEuromorphic Processing EnGines with Integrated VisuAl and FuNCtional SEnsingELEGANCE aims to develop eco-friendly, light-operated processing technology for energy-efficient IoT applications, utilizing sustainable materials to minimize electronic waste and environmental impact. | EIC Pathfinder | € 3.100.934 | 2024 | Details |
Strong-coupling-enhanced nanoparticle array organic light emitting diodeThe project aims to enhance OLED efficiency using plasmonic nanostructures to achieve over 50% quantum efficiency, making them competitive with inorganic LEDs while reducing environmental impact. | EIC Pathfinder | € 2.728.446 | 2023 | Details |
High-Speed Organic Photonics and OptoElecronics
HiSOPE aims to develop sustainable organic optoelectronic materials and devices for high-speed data transmission, enhancing European industrial autonomy and reducing environmental impact.
Green materials for neurOMorphic signal processing by organic synaptic transistors
GreenOMorph aims to drastically reduce the environmental impact of electronics by using neuromorphic computing and organic materials, promoting sustainable manufacturing and reducing reliance on critical raw materials.
RECONFIGURABLE SUPERCONDUTING AND PHOTONIC TECHNOLOGIES OF THE FUTURE
RESPITE aims to develop a compact, scalable neuromorphic computing platform integrating vision and cognition on a single chip using superconducting technologies for ultra-low power and high performance.
Green SELf-Powered NEuromorphic Processing EnGines with Integrated VisuAl and FuNCtional SEnsing
ELEGANCE aims to develop eco-friendly, light-operated processing technology for energy-efficient IoT applications, utilizing sustainable materials to minimize electronic waste and environmental impact.
Strong-coupling-enhanced nanoparticle array organic light emitting diode
The project aims to enhance OLED efficiency using plasmonic nanostructures to achieve over 50% quantum efficiency, making them competitive with inorganic LEDs while reducing environmental impact.