Glycan Mimetics for Cell Glycocalyx Reconstitution: a polymer chemist’s approach to fight infection
GLYMCE aims to uncover how carbohydrates influence pathogen interactions to create innovative glycopolymer materials for infection prevention and treatment.
Projectdetails
Objective
The aim of GLYMCE is to understand how carbohydrates and their assemblies are recognized by pathogens to drive infections. The identified molecular patterns will be transferred to biomimetic glycopolymer materials to extend the arsenal for the fight against infections.
Importance of Carbohydrates
Carbohydrates are not just sweet; they are crucial in various biological interactions. Cell surfaces are covered in carbohydrates, the glycocalyx, that governs contact with pathogens such as viruses and bacteria.
Role of Glycosaminoglycans
A class of carbohydrates critical for pathogen attachment and infections are glycosaminoglycans (GAGs). GAGs are highly diverse polysaccharides already used in medicine (e.g., heparin against thrombosis).
- The potential of GAGs in fighting viral and bacterial infections has been recognized in biology and medicine.
- However, as of today, there are no GAG-based drugs used for this purpose.
- A key limitation is insufficient knowledge about the mode of action of GAGs within the complex ensemble of the glycocalyx.
Research Questions
How does the display of GAGs within the glycocalyx affect their pathogen interactions?
Methodology
GLYMCE will tackle this question from the polymer chemist’s point of view by taking a bottom-up approach:
- Prepare GAG mimetics (level 1).
- Assemble glycocalyx mimetics and study their spatial organization of GAGs upon pathogen binding (level 2).
- Reengineer the glycocalyx of living cells to understand the factors governing infection (level 3).
This is only now possible through recent synthetic tools developed by my lab, enabling GAG mimetics with controlled sequence, molecular weight, chain conformation, architecture, and sulfation patterns – all parameters known to critically impact the affinity and selectivity of GAGs.
Overall Impact
Overall, by taking a radically different approach informed by chemical biology and brought to life by polymer chemistry, mechanisms for GAG-mediated pathogen attachment will be derived and applied to develop new materials and strategies to detect, prevent, and treat infections.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.994.024 |
Totale projectbegroting | € 1.994.024 |
Tijdlijn
Startdatum | 1-2-2024 |
Einddatum | 31-1-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ALBERT-LUDWIGS-UNIVERSITAET FREIBURGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Isotopically labelling of cell surface glycans to illuminate infectious processes at atomic resolutionGlyco13Cell aims to chemically remodel cell surface glycans using NMR probes to enhance understanding of glycan-lectin interactions for developing novel tools in infectious disease treatment. | ERC Starting... | € 1.500.000 | 2023 | Details |
All-in-one supramolecular approach as an innovative anti-infectious strategyPATHO-LEGO aims to develop hybrid molecules that simultaneously block Pseudomonas aeruginosa adhesion and recruit natural antibodies to enhance immune clearance of resistant strains. | ERC Proof of... | € 150.000 | 2023 | Details |
Molecular Mechanisms for Construction of Protective Mucus HydrogelsThis project aims to elucidate the molecular mechanisms of mucin glycoprotein assembly into hydrogels, enhancing our understanding for potential therapeutic applications in various diseases. | ERC Advanced... | € 2.162.383 | 2023 | Details |
Sweet adhesins: Probing bacterial glycoproteins with novel tools to inspire future antibacterial strategiesThe STICKY SUGARS project aims to develop methods for visualizing and quantifying bacterial adhesin sugars to establish them as novel antibacterial targets against resistant infections. | ERC Starting... | € 1.499.251 | 2023 | Details |
Glycan foldamers: designing oligosaccharides to build three-dimensional architecturesThe project aims to develop synthetic carbohydrate foldamers that adopt defined structures and assemble into complex architectures, enhancing understanding and applications in chemistry and material science. | ERC Starting... | € 1.499.956 | 2023 | Details |
Isotopically labelling of cell surface glycans to illuminate infectious processes at atomic resolution
Glyco13Cell aims to chemically remodel cell surface glycans using NMR probes to enhance understanding of glycan-lectin interactions for developing novel tools in infectious disease treatment.
All-in-one supramolecular approach as an innovative anti-infectious strategy
PATHO-LEGO aims to develop hybrid molecules that simultaneously block Pseudomonas aeruginosa adhesion and recruit natural antibodies to enhance immune clearance of resistant strains.
Molecular Mechanisms for Construction of Protective Mucus Hydrogels
This project aims to elucidate the molecular mechanisms of mucin glycoprotein assembly into hydrogels, enhancing our understanding for potential therapeutic applications in various diseases.
Sweet adhesins: Probing bacterial glycoproteins with novel tools to inspire future antibacterial strategies
The STICKY SUGARS project aims to develop methods for visualizing and quantifying bacterial adhesin sugars to establish them as novel antibacterial targets against resistant infections.
Glycan foldamers: designing oligosaccharides to build three-dimensional architectures
The project aims to develop synthetic carbohydrate foldamers that adopt defined structures and assemble into complex architectures, enhancing understanding and applications in chemistry and material science.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Inhibitor-Mediated Programming of GlycoformsThe project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions. | EIC Pathfinder | € 2.998.878 | 2025 | Details |
Precision control of glycosylation to open a new era of therapeutic antibodiesGlycoBoost aims to revolutionize monoclonal antibody design by producing therapeutics with uniform N-glycans, enhancing safety and efficacy for autoimmune disease treatments. | EIC Transition | € 2.499.540 | 2025 | Details |
Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseasesThe project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications. | EIC Pathfinder | € 3.920.718 | 2024 | Details |
Inhibitor-Mediated Programming of Glycoforms
The project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions.
Precision control of glycosylation to open a new era of therapeutic antibodies
GlycoBoost aims to revolutionize monoclonal antibody design by producing therapeutics with uniform N-glycans, enhancing safety and efficacy for autoimmune disease treatments.
Understanding the potential of modulating Host-Microbiome-Glycan interactions (“the triangle of sweetness”) to tackle non-communicable diseases
The project aims to identify novel glycosyltransferases and HMOs, analyze their gut interactions, and validate an HMO for inflammation relief, enhancing glycobiology research and therapeutic applications.