Entanglement of an array of massive, magnetically levitated superconducting microparticles on a chip
SuperQLev aims to demonstrate entanglement in magnetically levitated superconducting microparticles, merging technologies for advanced quantum sensing and tests of quantum mechanics.
Projectdetails
Introduction
Quantum states of massive objects have fascinated us since the inception of quantum mechanics. Nowadays, molecules of thousands of atoms and nanomechanical resonators weighing picograms can be brought into quantum states. This capability enables tests of the validity of quantum mechanics and provides new avenues for quantum technologies.
Importance of Entangled States
Entangled states are particularly relevant in this context as they unlock multipartite quantum correlations that, amongst others, enable precise measurements beyond the standard quantum limit and novel tests for the interplay between quantum mechanics and gravity.
Current Limitations
However, no experiment to date has demonstrated entanglement between a scalable number of massive particles, which would access a novel parameter regime in terms of mass, quantum correlation, and particle number.
Project Overview: SuperQLev
SuperQLev will fill this gap and demonstrate entanglement of the center-of-mass motion of an array of magnetically levitated superconducting microparticles on chip. This achievement will break new ground by exploring multipartite quantum states of massive objects ranging over six orders of magnitude in mass, from pico- to microgram.
Technological Innovations
SuperQLev will make this possible by merging two technologies into a unique experimental platform:
-
Magnetic Levitation of Superconducting Microparticles: This technology offers the capability of levitating massive particles at ultralow mechanical dissipation. My group has made pioneering contributions by realizing chip-based magnetic levitation of superconducting microparticles.
-
Superconducting Quantum Circuits: These circuits provide a versatile toolbox for quantum control.
Hybrid Quantum Platform
SuperQLev will merge these two platforms to achieve quantum control over the motion of levitated superconducting particles via inductive coupling to superconducting circuits. This hitherto unexplored hybrid quantum platform allows SuperQLev to conduct groundbreaking proof-of-principle experiments in quantum sensing and fundamental physics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CHALMERS TEKNISKA HOGSKOLA ABpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Cryogenic on-chip Levitated Optomechanics for a Spin Entanglement witness to Quantum GravityThis project aims to develop a platform for observing quantum entanglement in gravitational interactions, potentially unifying quantum mechanics and general relativity through innovative microfabrication techniques. | ERC Starting... | € 2.445.909 | 2022 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC Advanced... | € 2.498.759 | 2022 | Details |
A quantum hybrid of atoms and milligram-scale pendulums: towards gravitational quantum mechanicsThis project aims to explore quantum signatures in gravitational interactions using cold atoms and pendulums to potentially unify gravity and quantum mechanics through innovative experimental techniques. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Millimetre-Wave Superconducting Quantum CircuitsThe project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges. | ERC Advanced... | € 2.736.708 | 2022 | Details |
Circuit Quantum Electrodynamic Spectroscope: a new superconducting microwave quantum sensorcQEDscope aims to enhance understanding of superconductivity and develop advanced quantum sensors using superconducting circuits to probe materials and create novel quantum systems. | ERC Starting... | € 1.480.000 | 2023 | Details |
Cryogenic on-chip Levitated Optomechanics for a Spin Entanglement witness to Quantum Gravity
This project aims to develop a platform for observing quantum entanglement in gravitational interactions, potentially unifying quantum mechanics and general relativity through innovative microfabrication techniques.
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
A quantum hybrid of atoms and milligram-scale pendulums: towards gravitational quantum mechanics
This project aims to explore quantum signatures in gravitational interactions using cold atoms and pendulums to potentially unify gravity and quantum mechanics through innovative experimental techniques.
Millimetre-Wave Superconducting Quantum Circuits
The project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges.
Circuit Quantum Electrodynamic Spectroscope: a new superconducting microwave quantum sensor
cQEDscope aims to enhance understanding of superconductivity and develop advanced quantum sensors using superconducting circuits to probe materials and create novel quantum systems.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum Control of Gravity with Levitated MechanicsQuCoM aims to demonstrate a levitated acceleration sensor for detecting gravity in small masses, exploring quantum mechanics and gravity through innovative tabletop experiments. | EIC Pathfinder | € 2.270.149 | 2022 | Details |
Entangled Flying Electron Quantum TechnologyELEQUANT aims to revolutionize quantum technology by developing high-fidelity flying charge qubits using electronic wavepackets in novel semiconductor materials for enhanced scalability and connectivity. | EIC Pathfinder | € 3.495.061 | 2025 | Details |
SuPErConducTing Radio-frequency switch for qUantuM technologiesThe project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation. | EIC Transition | € 2.499.222 | 2022 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Quantum Control of Gravity with Levitated Mechanics
QuCoM aims to demonstrate a levitated acceleration sensor for detecting gravity in small masses, exploring quantum mechanics and gravity through innovative tabletop experiments.
Entangled Flying Electron Quantum Technology
ELEQUANT aims to revolutionize quantum technology by developing high-fidelity flying charge qubits using electronic wavepackets in novel semiconductor materials for enhanced scalability and connectivity.
SuPErConducTing Radio-frequency switch for qUantuM technologies
The project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation.
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.