Efficient and functional optical frequency conversion in 3D Nonlinear Optical Artificial Materials
Developing 3D nano-engineered nonlinear optical materials to enhance frequency conversion efficiency and overcome limitations of bulk nonlinear crystals for advanced optical technologies.
Projectdetails
Introduction
Optical frequency conversion in bulk nonlinear crystals is used for generation of coherent light over the entire optical regime from extreme ultra-violet up to THz waves. This remarkable ability is at the core of a plethora of important technological and scientific applications.
Limitations of Bulk Nonlinear Crystals
However, bulk nonlinear crystals pose strong limitations on integration, miniaturization, and control over the nonlinear interactions, holding back the further progress of optical frequency conversion technologies.
Proposed Breakthrough
I propose to lead a great breakthrough in the field by developing a new kind of 3D nano-engineered nonlinear optical artificial materials with superior nonlinear optical properties, and free of the limitations of bulk nonlinear crystals.
Inspiration from Nonlinear Metasurfaces
These materials will be inspired by recently developed nonlinear metasurfaces. It was demonstrated that nonlinear metasurfaces exhibit unprecedented nonlinear functionalities, and effective nonlinearities exceeding by far those of bulk nonlinear crystals, promising to replace bulk crystals in future nonlinear optical technologies.
Challenges with Current Designs
However, their two-dimensional designs and nanoscale thickness strongly limit their frequency conversion efficiency, with no existing practical nanofabrication approach nor theoretical proposition to overcome this limitation.
Research Goals
Our research aims to close this gap. We will:
- Develop a new nanofabrication methodology that will allow stacking hundreds of nonlinear metasurfaces into a 3D nonlinear material in a technologically viable way.
- Study new fundamental nonlinear interactions in these novel nonlinear materials.
- Demonstrate experimentally their superiority over bulk nonlinear crystals in conversion efficiency and functionalities.
Potential Impact
These achievements will potentially pave the way to the next era of nonlinear optical frequency conversion technologies. They will also immediately impact applications of 3D nanostructured optical materials in general, as well as may change the way we think about 3D nanofabrication.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.000.000 |
Totale projectbegroting | € 3.000.000 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TEL AVIV UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D integrated photonic nanostructures with Giant optical nonlinearity3DnanoGiant aims to develop innovative nonlinear photonic materials using liquid crystals for efficient all-optical signal processing in integrated photonic devices. | ERC Starting... | € 1.500.000 | 2025 | Details |
Excitonic 2D Metasurfaces for Active Multifunctional Flat OpticsThis project aims to develop tunable optical elements using monolayer 2D quantum materials to create multifunctional metasurfaces for advanced applications in optics and imaging. | ERC Starting... | € 1.499.985 | 2024 | Details |
Interactive phononic matter: reshaping crystal landscapes for ultrafast switchingINTERPHON aims to revolutionize material manipulation by using ultrafast light interactions with crystal lattices, enabling energy-efficient phase transitions and new technological advancements. | ERC Advanced... | € 3.250.000 | 2025 | Details |
Atomically layered materials for next-generation metasurfacesMETANEXT aims to enhance light-matter interactions in 2D materials by developing hBN-based metasurfaces for efficient optical access, enabling advances in quantum light sources and electronic properties. | ERC Starting... | € 1.498.056 | 2023 | Details |
NONLINEAR DYNAMICS OF FLUCTUATING TWO-DIMENSIONAL MATERIALS IN ACTIONNCANTO aims to harness nonlinear dynamics in 2D materials to create highly-sensitive nanomechanical devices for improved frequency stability and single-cell sensing in drug development. | ERC Consolid... | € 1.999.021 | 2024 | Details |
3D integrated photonic nanostructures with Giant optical nonlinearity
3DnanoGiant aims to develop innovative nonlinear photonic materials using liquid crystals for efficient all-optical signal processing in integrated photonic devices.
Excitonic 2D Metasurfaces for Active Multifunctional Flat Optics
This project aims to develop tunable optical elements using monolayer 2D quantum materials to create multifunctional metasurfaces for advanced applications in optics and imaging.
Interactive phononic matter: reshaping crystal landscapes for ultrafast switching
INTERPHON aims to revolutionize material manipulation by using ultrafast light interactions with crystal lattices, enabling energy-efficient phase transitions and new technological advancements.
Atomically layered materials for next-generation metasurfaces
METANEXT aims to enhance light-matter interactions in 2D materials by developing hBN-based metasurfaces for efficient optical access, enabling advances in quantum light sources and electronic properties.
NONLINEAR DYNAMICS OF FLUCTUATING TWO-DIMENSIONAL MATERIALS IN ACTION
NCANTO aims to harness nonlinear dynamics in 2D materials to create highly-sensitive nanomechanical devices for improved frequency stability and single-cell sensing in drug development.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Frequency-agile lasers for photonic sensingFORTE aims to develop a scalable, high-performance, photonic integrated circuit-based laser technology for fiber sensing and FMCW LiDAR, enhancing manufacturing and reducing costs. | EIC Transition | € 1.966.218 | 2023 | Details |
Frequency-agile lasers for photonic sensing
FORTE aims to develop a scalable, high-performance, photonic integrated circuit-based laser technology for fiber sensing and FMCW LiDAR, enhancing manufacturing and reducing costs.