The ANAEROBic treasure trunk
ANAEROB aims to create a versatile platform for designing microbial consortia to enhance anaerobic processes for upcycling organic waste into sustainable materials and energy.
Projectdetails
Introduction
ANAEROB aims to generate a platform that enables linking microbial ecology to biotechnology. This platform should be general and applicable to a very wide range of conditions and applications.
Importance of Anaerobic Processes
Anaerobic processes are performed by a well-structured microbial community and have great potential for upcycling organic wastes and industrial/agricultural residual resources to achieve a circular bioeconomy. Upcycling of residual resources through the production of materials, biochemicals, and energy is a promising way towards more sustainable production.
Need for Mixed Culture Microbial Consortia
Pure culture fermentations are not appropriate when wastes are the substrate, and therefore mixed culture microbial consortia are required. Currently, inocula for biological processes utilizing wastes as substrates are random self-established cultures. Comprehensive knowledge about the microbial interactions of the anaerobic microbiome is needed for the valorization and remediation of biowastes.
Project Aim
The overall aim of ANAEROB is to understand how to create “designer microbial consortia” for specific bioengineering processes based on genetic information of anaerobic microorganisms.
Objectives
The aim will be achieved by:
- Elucidating the syntrophic mutualistic symbioses of the anaerobic microbiome and clarifying the role of specific compounds exchanged by microbes.
- Developing models for the prediction of desired pathways.
- Developing methods for the isolation of new unculturable anaerobes.
- Developing a novel method for designing and establishing microbial “cocktails” for specific functions.
- Validating the concept of creating specific anaerobic consortia for upcycling gas streams of carbon-intensive industries.
Multidisciplinary Approach
ANAEROB takes a multidisciplinary approach to use both engineering and microbiology to reach the next level of understanding for the exploitation of the anaerobic microbial “treasure”.
Expected Benefits
The project’s successful completion will have major benefits in industrial sectors and environmental applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.494.159 |
Totale projectbegroting | € 2.494.159 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- DANMARKS TEKNISKE UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Harnessing Specialized Metabolism from AnaerobesThe AnoxyGen project aims to explore and harness the unique biosynthetic capabilities of anaerobic bacteria to discover novel metabolites and enhance biotechnological applications for health and ecology. | ERC Advanced... | € 2.499.859 | 2025 | Details |
An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Next-generation engineering of gas-fermenting cell factories through large-scale systems-level mapsGENESYS aims to engineer advanced gas-fermenting acetogen cell factories by enhancing understanding of their genetics and metabolism through CRISPR-based strain libraries and high-throughput analyses. | ERC Consolid... | € 2.330.500 | 2024 | Details |
It takes two to TAngO2: unravelling the role of syntrophic interactions in the evolution of anaerobic eukaryotesTAngO2 aims to explore how syntrophic partnerships enable eukaryotes to thrive in low-oxygen environments, using advanced genomic techniques to uncover essential interactions and evolutionary implications. | ERC Starting... | € 1.657.193 | 2023 | Details |
Translating a new metabolic engineering strategy to industrial biotech applicationsThe TRANSMETECH project aims to translate the StrainBooster metabolic engineering strategy into industrial applications, enhancing bioprocess efficiency for sustainable chemical production. | ERC Proof of... | € 150.000 | 2023 | Details |
Harnessing Specialized Metabolism from Anaerobes
The AnoxyGen project aims to explore and harness the unique biosynthetic capabilities of anaerobic bacteria to discover novel metabolites and enhance biotechnological applications for health and ecology.
An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.
EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry.
Next-generation engineering of gas-fermenting cell factories through large-scale systems-level maps
GENESYS aims to engineer advanced gas-fermenting acetogen cell factories by enhancing understanding of their genetics and metabolism through CRISPR-based strain libraries and high-throughput analyses.
It takes two to TAngO2: unravelling the role of syntrophic interactions in the evolution of anaerobic eukaryotes
TAngO2 aims to explore how syntrophic partnerships enable eukaryotes to thrive in low-oxygen environments, using advanced genomic techniques to uncover essential interactions and evolutionary implications.
Translating a new metabolic engineering strategy to industrial biotech applications
The TRANSMETECH project aims to translate the StrainBooster metabolic engineering strategy into industrial applications, enhancing bioprocess efficiency for sustainable chemical production.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomersECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks. | EIC Pathfinder | € 3.776.701 | 2023 | Details |
Microbial Hydroponics: Circular Sustainable ElectrobiosynthesisMi-Hy integrates Microbial Fuel Cell technology with hydroponics to create a sustainable system that optimizes nutrient uptake and energy generation while reducing reliance on chemical fertilizers. | EIC Pathfinder | € 2.890.605 | 2023 | Details |
Biotechnologie als Oplossing voor Agrarisch Stikstofprobleem (BOAS)Het project ontwikkelt een microbiologisch proces om stikstofverbindingen in dunne mestfractie te reduceren, ter verbetering van milieu en landbouw. | Mkb-innovati... | € 90.825 | 2020 | Details |
Biocatalytic membranes for micro/nano plastic degradation within waste water effluentsBMRex aims to develop a novel biocatalyst-based membrane reactor technology for efficient removal and degradation of micro/nano-plastics from wastewater, promoting sustainable plastic recycling. | EIC Pathfinder | € 3.638.501 | 2023 | Details |
ECOOVALUE - Smart and dynamic bioproduction with integrated CO2 valorizationHet ECOOVALUE-project richt zich op het optimaliseren van biomanufacturingprocessen voor dynamische werking, om CO2 te recyclen en de integratie in het elektriciteitsnet te verbeteren, met als doel kosten te verlagen en emissies te verminderen. | Missiegedrev... | € 3.479.073 | 2025 | Details |
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomers
ECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks.
Microbial Hydroponics: Circular Sustainable Electrobiosynthesis
Mi-Hy integrates Microbial Fuel Cell technology with hydroponics to create a sustainable system that optimizes nutrient uptake and energy generation while reducing reliance on chemical fertilizers.
Biotechnologie als Oplossing voor Agrarisch Stikstofprobleem (BOAS)
Het project ontwikkelt een microbiologisch proces om stikstofverbindingen in dunne mestfractie te reduceren, ter verbetering van milieu en landbouw.
Biocatalytic membranes for micro/nano plastic degradation within waste water effluents
BMRex aims to develop a novel biocatalyst-based membrane reactor technology for efficient removal and degradation of micro/nano-plastics from wastewater, promoting sustainable plastic recycling.
ECOOVALUE - Smart and dynamic bioproduction with integrated CO2 valorization
Het ECOOVALUE-project richt zich op het optimaliseren van biomanufacturingprocessen voor dynamische werking, om CO2 te recyclen en de integratie in het elektriciteitsnet te verbeteren, met als doel kosten te verlagen en emissies te verminderen.