Machine learning for decision making under uncertainty

Develop a machine learning and operations research framework for making robust investment decisions in renewable energy under uncertainty through iterative scenario generation and optimization.

Subsidie
€ 2.491.210
2024

Projectdetails

Introduction

Many important decisions are taken under uncertainty since we do not know the development of various parameters. In particular, the ongoing green transition requires large and urgent societal investments in new energy modes, infrastructure, and technology.

Long-Term Decision Making

The decisions are spanning over a very long time-horizon, and there are large uncertainties regarding:

  1. Energy prices
  2. Demand for energy
  3. Production from renewable sources

Such problems can be described as two-stage stochastic optimization problems, where we first decide which facilities to establish, and then we have to schedule the production/transportation for a stochastic demand, using the given facilities. If the decision variables are discrete, such problems are extremely difficult to solve.

Project Overview

In this project, we will develop a new framework for investment decision-making under uncertainty based on a combination of machine learning and operations research. Instead of solving a complex stochastic optimization problem defined on a fixed set of forecasted scenarios, we propose to use an iterative process:

  • We repeatedly generate new scenarios
  • Solve them using advanced optimization methods
  • Find the corresponding investment solutions

Methodology

Our novel way of optimization will use deep generative models (DGMs) to generate small sets of scenarios matching the real distribution. We will also use a guided local search process to select scenarios that properly reflect properties of the full set of scenarios.

Expected Outcomes

The outcome of the iterative process is a palette of near-optimal solutions, which can be analyzed using data science methods to:

  • Extract associations in investments
  • Outrank dominated choices
  • Organize investments according to urgency

Knowing the full spectrum of possible choices opens up for a much broader discussion of investments, while allowing soft constraints to also be taken into account. This will enable a more transparent and inclusive decision process, while ensuring well-founded and more robust investment decisions.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.491.210
Totale projectbegroting€ 2.491.210

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • DANMARKS TEKNISKE UNIVERSITETpenvoerder

Land(en)

Denmark

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Challenges in Competitive Online Optimisation

This project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning.

€ 1.499.828
ERC Starting...

Crisis-Resilient Price Discovery in Decarbonized Power Systems

The project aims to leverage innovative optimization and machine learning techniques to enhance power market efficiency and resilience, facilitating a just clean energy transition amidst the energy crisis.

€ 1.499.490
ERC Consolid...

Debiasing the uncertainties of climate stabilization ensembles

EUNICE aims to enhance climate stabilization assessments by quantifying uncertainties, consolidating model ensembles, and improving decision-making frameworks for resilient recommendations.

€ 1.995.000
ERC Starting...

Optimization and data aggregation for net-zero power systems

This project aims to develop a novel theoretical framework for time series aggregation in optimization models, enhancing computational efficiency and accuracy for complex systems with varying time dynamics.

€ 1.499.888
ERC Starting...

Explaining human decision-making by combining choice and process data

IMMERSION aims to enhance understanding of human decision-making by developing innovative methods to integrate choice and process data for real-world applications in transportation systems.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Supply Chain monitoring met Machine Learning

Dit project onderzoekt de haalbaarheid van een innovatieve Machine Learning techniek voor continue monitoring in de supply chain.

€ 20.000
Mkb-innovati...

Automatisering van energieoptimalisatie

Dit project onderzoekt de automatisering van parameter estimation voor Model Predictive Control om energiebesparing en duurzaamheid te versnellen.

€ 20.000
Mkb-innovati...

Energy Management System Consument

Het project ontwikkelt een adaptief energiebeheersysteem dat met digitale communicatie en machine learning vraag en aanbod van hernieuwbare energie optimaliseert voor consumenten.

€ 93.047
Mkb-innovati...

Forecasting onbalans in energienetwerken

Het project onderzoekt het gebruik van multi-objectieve simulaties en finite state machines voor het voorspellen van energienet-onbalans, om laadstrategieën voor EV's en energieplanning te verbeteren.

€ 20.000
Mkb-innovati...

ALGORITHM

Advanced Solutions Nederland onderzoekt de haalbaarheid van ALGORITHM, een AI-gestuurd systeem voor predictive maintenance in de industrie, met innovatieve sensoren en analysemethoden.

€ 20.000