Hybrid and Interpretable Deep neural audio machines
HI-Audio aims to develop hybrid deep learning models that integrate interpretable signal processing with neural architectures for enhanced audio analysis and synthesis applications.
Projectdetails
Introduction
Machine Listening, or AI for Sound, is defined as the general field of Artificial Intelligence applied to audio analysis, understanding, and synthesis by a machine. The access to ever-increasing super-computing facilities, combined with the availability of huge data repositories (although largely unannotated), has led to the emergence of a significant trend with pure data-driven machine learning approaches.
Trends in Machine Listening
The field has rapidly moved towards end-to-end neural approaches which aim to directly solve the machine learning problem for raw acoustic signals. However, these approaches often only loosely take into account the nature and structure of the processed data.
Consequences of Current Approaches
The main consequences are that the models are:
- Overly complex, requiring massive amounts of data to be trained and extreme computing power to be efficient (in terms of task performance).
- Largely unexplainable and non-interpretable.
Proposed Solutions
To overcome these major shortcomings, we believe that our prior knowledge about the nature of the processed data, their generation process, and their perception by humans should be explicitly exploited in neural-based machine learning frameworks.
Project Aim
The aim of HI-Audio is to build such hybrid deep approaches combining:
- Parameter-efficient and interpretable signal models
- Musicological and physics-based models
- Highly tailored, deep neural architectures
Research Directions
The research directions pursued in HI-Audio will exploit novel deterministic and statistical audio and sound environment models with dedicated neural auto-encoders and generative networks. The project will target specific applications including:
- Speech and audio scene analysis
- Music information retrieval
- Sound transformation and synthesis
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.482.317 |
Totale projectbegroting | € 2.482.317 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- INSTITUT MINES-TELECOMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Natural Auditory SCEnes in Humans and Machines: Establishing the Neural Computations of Everyday HearingThe NASCE project aims to understand auditory scene analysis by developing the Semantic Segmentation Hypothesis, integrating neuroscience and AI to enhance comprehension and applications in machine hearing. | ERC Synergy ... | € 8.622.811 | 2025 | Details |
Reconciling Classical and Modern (Deep) Machine Learning for Real-World ApplicationsAPHELEIA aims to create robust, interpretable, and efficient machine learning models that require less data by integrating classical methods with modern deep learning, fostering interdisciplinary collaboration. | ERC Consolid... | € 1.999.375 | 2023 | Details |
Interactive and Explainable Human-Centered AutoMLixAutoML aims to enhance trust and interactivity in automated machine learning by integrating human insights and explanations, fostering democratization and efficiency in ML applications. | ERC Starting... | € 1.459.763 | 2022 | Details |
Deep Culture - Living with Difference in the Age of Deep LearningDEEP CULTURE aims to critically explore the intersection of deep learning and cultural production through an interdisciplinary framework, fostering new methodologies and public engagement. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Inference in High Dimensions: Light-speed Algorithms and Information LimitsThe INF^2 project develops information-theoretically grounded methods for efficient high-dimensional inference in machine learning, aiming to reduce costs and enhance interpretability in applications like genome-wide studies. | ERC Starting... | € 1.662.400 | 2024 | Details |
Natural Auditory SCEnes in Humans and Machines: Establishing the Neural Computations of Everyday Hearing
The NASCE project aims to understand auditory scene analysis by developing the Semantic Segmentation Hypothesis, integrating neuroscience and AI to enhance comprehension and applications in machine hearing.
Reconciling Classical and Modern (Deep) Machine Learning for Real-World Applications
APHELEIA aims to create robust, interpretable, and efficient machine learning models that require less data by integrating classical methods with modern deep learning, fostering interdisciplinary collaboration.
Interactive and Explainable Human-Centered AutoML
ixAutoML aims to enhance trust and interactivity in automated machine learning by integrating human insights and explanations, fostering democratization and efficiency in ML applications.
Deep Culture - Living with Difference in the Age of Deep Learning
DEEP CULTURE aims to critically explore the intersection of deep learning and cultural production through an interdisciplinary framework, fostering new methodologies and public engagement.
Inference in High Dimensions: Light-speed Algorithms and Information Limits
The INF^2 project develops information-theoretically grounded methods for efficient high-dimensional inference in machine learning, aiming to reduce costs and enhance interpretability in applications like genome-wide studies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Semi-supervised learning voor dynamische geluidkaart in gebouwde omgevingMuniSense, Peutz en Embedded Acoustics ontwikkelen een dynamische geluidskaart met AI, gericht op geluidsmonitoring in de gebouwde omgeving, met nadruk op betrouwbare, mensgerichte participatie. | Mkb-innovati... | € 285.180 | 2022 | Details |
Een standaard voor productiewaardige Deep Learning systemenHet project richt zich op het verbeteren van audio- en video-analyse systemen door samenwerking tussen Media Distillery, NovoLanguage en een partner, met als doel hogere kwaliteit en snellere ontwikkeling via gedeelde technologieën. | Mkb-innovati... | € 104.061 | 2016 | Details |
Project HominisHet project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert. | Mkb-innovati... | € 20.000 | 2022 | Details |
RESONIKSHet project gebruikt Machine Learning en AI voor snelle, operatorloze akoestische kwaliteitsinspecties, wat de doorlooptijd en kwaliteit verbetert en de reputatie en omzet van bedrijven verhoogt. | Mkb-innovati... | € 188.300 | 2023 | Details |
Neuron Soundware: detecting machine failures early combining sound, AI and IoT technologiesNSW is an AI-driven diagnostic technology that detects machine faults early through acoustic analysis, enhancing industrial sustainability with 99.6% accuracy and minimizing downtime. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Semi-supervised learning voor dynamische geluidkaart in gebouwde omgeving
MuniSense, Peutz en Embedded Acoustics ontwikkelen een dynamische geluidskaart met AI, gericht op geluidsmonitoring in de gebouwde omgeving, met nadruk op betrouwbare, mensgerichte participatie.
Een standaard voor productiewaardige Deep Learning systemen
Het project richt zich op het verbeteren van audio- en video-analyse systemen door samenwerking tussen Media Distillery, NovoLanguage en een partner, met als doel hogere kwaliteit en snellere ontwikkeling via gedeelde technologieën.
Project Hominis
Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.
RESONIKS
Het project gebruikt Machine Learning en AI voor snelle, operatorloze akoestische kwaliteitsinspecties, wat de doorlooptijd en kwaliteit verbetert en de reputatie en omzet van bedrijven verhoogt.
Neuron Soundware: detecting machine failures early combining sound, AI and IoT technologies
NSW is an AI-driven diagnostic technology that detects machine faults early through acoustic analysis, enhancing industrial sustainability with 99.6% accuracy and minimizing downtime.