Engineered viscoelasticity in regenerative microenvironments
This project aims to develop viscoelastic hydrogels to enhance mesenchymal stem cell differentiation and promote bone regeneration, while utilizing Brillouin microscopy to monitor their properties in vivo.
Projectdetails
Introduction
Tissues are viscoelastic materials whose mechanical properties evolve with time, and yet this important property has not been incorporated in the design of regenerative biomaterials. Mechanical properties of biomaterials are known to influence fundamental cellular processes, including cell migration, cell growth, and cell differentiation.
Importance of Mechanical Properties
However, most of the work to understand the mechanical properties of substrates on mesenchymal stem cell (MSC) differentiation has made use of pure elastic materials. Cells probe their environment by pulling forces and receiving mechanical feedback through membrane receptors.
Hypothesis
Since viscoelastic materials respond with a time-dependent process to force, we hypothesize that viscoelasticity will play a fundamental role in the differentiation of mesenchymal stem cells and hence in the design of regenerative biomaterials.
Project Objectives
This project will develop:
- A new family of viscoelastic hydrogels with controlled properties that include:
- Biochemical functionalities (recapitulating the properties of the extracellular matrix in vivo)
- Extreme mechanical properties (i.e., very low/high elastic and viscous properties)
- Mechanical gradients
- Brillouin microscopy to follow the evolution of the local viscoelastic properties of these cell-laden materials as a function of time.
Application
We will use viscoelastic materials to promote bone regeneration in vivo using our critical-sized defect in the mouse radius model. In a major attempt to move the field forward, we will further develop Brillouin microscopy to monitor the viscoelastic properties of regenerative microenvironments in vivo.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.497.246 |
Totale projectbegroting | € 2.497.246 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering soft microdevices for the mechanical characterization and stimulation of microtissuesThis project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments. | ERC Advanced... | € 3.475.660 | 2025 | Details |
Lightsheet Brillouin Nanoscopy: mechano-sensitive superresolution imaging for regenerative medicineThis project aims to develop Lightsheet Brillouin Nanoscopy (LiBriNa), a groundbreaking microscopy technique for imaging viscoelasticity in living cardiac tissues at unprecedented speed and resolution. | ERC Starting... | € 1.807.313 | 2025 | Details |
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological TestingISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies. | ERC Proof of... | € 150.000 | 2023 | Details |
Vibrational Micro-robots in Viscoelastic Biological TissuesThe project aims to develop vibrational micro-robots (VIBEBOTS) for efficient propulsion and sensing in viscoelastic biological tissues, enhancing targeted drug delivery and minimally-invasive procedures. | ERC Starting... | € 1.499.728 | 2023 | Details |
ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAYThis project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes. | ERC Advanced... | € 2.490.725 | 2023 | Details |
Engineering soft microdevices for the mechanical characterization and stimulation of microtissues
This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.
Lightsheet Brillouin Nanoscopy: mechano-sensitive superresolution imaging for regenerative medicine
This project aims to develop Lightsheet Brillouin Nanoscopy (LiBriNa), a groundbreaking microscopy technique for imaging viscoelasticity in living cardiac tissues at unprecedented speed and resolution.
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing
ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.
Vibrational Micro-robots in Viscoelastic Biological Tissues
The project aims to develop vibrational micro-robots (VIBEBOTS) for efficient propulsion and sensing in viscoelastic biological tissues, enhancing targeted drug delivery and minimally-invasive procedures.
ENGINEERING CELLULAR SELF‐ORGANISATION BY CONTROLLING THE IMMUNO-MECHANICAL INTERPLAY
This project aims to reduce scarring in bone regeneration by engineering synthetic immune-mechanical niches to enhance cell self-organization and matrix formation, improving healing outcomes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of an In-Vivo Brillouin Microscope (with application to Protein Aggregation-based Pathologies)This project aims to enhance Brillouin Microscopy for real-time, non-destructive assessment of viscoelastic properties in living cells, addressing key biomedical challenges. | EIC Pathfinder | € 3.333.513 | 2023 | Details |
PRInted Symbiotic Materials as a dynamic platform for Living Tissues productionPRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications. | EIC Pathfinder | € 2.805.403 | 2022 | Details |
Development of an In-Vivo Brillouin Microscope (with application to Protein Aggregation-based Pathologies)
This project aims to enhance Brillouin Microscopy for real-time, non-destructive assessment of viscoelastic properties in living cells, addressing key biomedical challenges.
PRInted Symbiotic Materials as a dynamic platform for Living Tissues production
PRISM-LT aims to develop a flexible bioprinting platform using hybrid living materials to enhance stem cell differentiation with engineered helper cells for biomedical and food applications.