Endothelial immunosuppressive mystery genes for alternative immunotherapy: artificial intelligence-driven target discovery and lipid nanoparticle/RNA-based target validation

This project aims to enhance cancer immunotherapy by targeting immunomodulatory endothelial cell subtypes and utilizing AI and innovative gene editing technologies to identify and validate new therapeutic targets.

Subsidie
€ 3.498.426
2023

Projectdetails

Introduction

Compared to my previous Advanced ERC grants, this proposal is fundamentally different not only concerning its topic but also regarding its ambition to offer greater societal impact by coupling knowledge gain tighter to translation.

Objectives

It promises to obtain new insights in an understudied endothelial cell (EC) subtype with immunomodulatory gene signatures (coined “IMECs”), highly relevant for alternative immunotherapy development. Indeed, silencing immunosuppressive genes in IMECs offers unprecedented opportunities to improve the efficacy of and to overcome the resistance to current anti-cancer immunotherapy, to which the immunosuppressive tumor endothelium contributes.

Methodology

To identify previously unknown/unmined (“virgin”) drug targets, we also focus on “mystery” genes, lacking functional annotation / PubMed reports (comprising 30% of the human coding genome). We developed:

  1. An innovative artificial intelligence (AI)-based tool (SCMYSTERYDENTIFIER) to predict new immunosuppressive functions for endothelial “mystery” genes.
  2. A revolutionizing (“REVOLT”) technology (based on injecting EC-selective lipid nanoparticles containing sgRNA in mice expressing Cas9 selectively in ECs) to generate EC-specific knockout mice rapidly (days)/inexpensively (300€/mouse) at an unprecedented scale in order to validate these targets.

Impact

Demystifying the mystery genome offers formidable opportunities for knowledge gain and therapy development. We will validate 50 new EC targets and aspire to identify and patent 5 previously unknown targets for alternative IMEC-based immunotherapy.

Future Applications

The SCMYSTERYDENTIFIER tool can be made generic to discover any type of function for mystery genes in any cell type, while the REVOLT technology promises to revolutionize the pace of genetic research in the vascular biology field, offering formidable impact for the research community in academia and pharma.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 3.498.426
Totale projectbegroting€ 3.498.426

Tijdlijn

Startdatum1-3-2023
Einddatum29-2-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • VIB VZWpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune response

This project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer.

€ 150.000
ERC Synergy ...

Targeting the vascular-immune interface to induce anti-tumor immunity

This project aims to enhance cancer immunotherapy by characterizing the vascular-immune interface in melanoma and glioblastoma to optimize immune responses through targeted therapeutic induction.

€ 9.453.750
ERC Advanced...

Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies

The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.

€ 2.500.000
ERC Consolid...

Unlocking a T cell-mediated Immune response in therapy-challenged Tumors

UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.

€ 2.000.000
ERC Proof of...

Targeted Immunocytokines by CaGing and local Release

This project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Functional chemical reprogramming of cancer cells to induce antitumor immunity

The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.

€ 2.966.695
Mkb-innovati...

PREDICT - Towards a PREDICTable combination therapy

Het project richt zich op het ontwikkelen van een datagestuurde combinatie van immuunsuppressie en NK-celtherapie om de uitkomst van kankerbehandelingen te voorspellen en te verbeteren.

€ 165.355