Breaking resistance of pathogenic bacteria by chemical dysregulation
The project aims to combat antibiotic-resistant bacteria by developing innovative small molecules that dysregulate bacterial physiology through a three-tiered chemical strategy.
Projectdetails
Introduction
Antibiotic resistant bacteria are on the rise and could trigger the next global pandemic. For some pathogens, no treatment options are left, leading to steadily increasing death tolls. The limited scope of bacterial targets, all essential for growth, has favored resistance build-up whilst also being ineffective against non-growing persister cells. To overcome this threat, innovative concepts are required to effectively and sustainably kill bacteria via unprecedented mechanisms.
Project Overview
My team and I tackle this challenge by deliberately going beyond established modes of action (MoA). To achieve this, we present breakingBAC: a three-tiered chemical strategy to dysregulate bacterial physiology.
Tier 1: Small Molecule Activators
First, we will develop small molecule activators of crucial bacterial hydrolases to deregulate the degradation of proteins, leading to devastating physiological effects. Although enzyme stimulation has several advantages over inhibition, this concept is still in its infancy. We thus showcase principles of activator discovery and demonstrate their potency against diverse pathogens.
Tier 2: Antibiotic Isonitriles
Second, we recently discovered the complexation of free cellular heme by antibiotic isonitriles leading to a dysregulation of porphyrin biosynthesis and a corresponding induction of oxidative stress. Although these isonitriles are too large to access protein-bound heme, we will tailor their structure to additionally target heme-dependent enzymes of the stress response. The aim is to develop molecules bearing a dual MoA:
- Stress induction
- Inhibition of stress response
Tier 3: Bifunctional Compounds
Third, we will combine our learnings to create bifunctional compounds consisting of a hyperactivating protease recruiter linked to a bait which delivers the large class of essential heme-dependent enzymes for proteolysis. As these protein degraders are hyperactive, catalytic in nature, and specific for bacterial proteases, we anticipate potent antibiotic effects combined with low resistance frequencies and lack of human toxicity.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.785 |
Totale projectbegroting | € 2.499.785 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET MUENCHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
All-in-one supramolecular approach as an innovative anti-infectious strategyPATHO-LEGO aims to develop hybrid molecules that simultaneously block Pseudomonas aeruginosa adhesion and recruit natural antibodies to enhance immune clearance of resistant strains. | ERC Proof of... | € 150.000 | 2023 | Details |
Finding the missing links in the bacterial cell cycleThis project aims to uncover the connections between key bacterial cell cycle events to inform innovative antibiotic discovery methods targeting multiple pathways. | ERC Advanced... | € 2.999.625 | 2024 | Details |
Unraveling the regulatory networks in Streptomyces that switch on antibiotic production on demandThis project aims to unlock the expression of cryptic biosynthetic gene clusters in Streptomyces to enhance drug discovery and agricultural applications through innovative systems biology and ecological insights. | ERC Advanced... | € 3.343.206 | 2022 | Details |
Breaking down barriers against antimicrobials: elucidating a cross-kingdom novel lipid transport mechanismThis project aims to characterize DedA proteins to uncover their role in lipid transport and cell envelope biogenesis in Gram-negative bacteria, addressing antimicrobial resistance mechanisms. | ERC Starting... | € 1.472.710 | 2025 | Details |
Bacteriocins from interbacterial warfare as antibiotic alternativeBACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health. | ERC Advanced... | € 2.500.000 | 2023 | Details |
All-in-one supramolecular approach as an innovative anti-infectious strategy
PATHO-LEGO aims to develop hybrid molecules that simultaneously block Pseudomonas aeruginosa adhesion and recruit natural antibodies to enhance immune clearance of resistant strains.
Finding the missing links in the bacterial cell cycle
This project aims to uncover the connections between key bacterial cell cycle events to inform innovative antibiotic discovery methods targeting multiple pathways.
Unraveling the regulatory networks in Streptomyces that switch on antibiotic production on demand
This project aims to unlock the expression of cryptic biosynthetic gene clusters in Streptomyces to enhance drug discovery and agricultural applications through innovative systems biology and ecological insights.
Breaking down barriers against antimicrobials: elucidating a cross-kingdom novel lipid transport mechanism
This project aims to characterize DedA proteins to uncover their role in lipid transport and cell envelope biogenesis in Gram-negative bacteria, addressing antimicrobial resistance mechanisms.
Bacteriocins from interbacterial warfare as antibiotic alternative
BACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradicationBactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria. | EIC Pathfinder | € 2.996.312 | 2024 | Details |
A novel combination treatment effective against all multidrug-resistant pathogens deemed as a critical priority by the WHODeveloping a combination of meropenem and ANT3310 to combat drug-resistant Gram-negative infections, aiming for market approval by 2029 and projected sales over €10bn in 13 years. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infectionsLeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations. | EIC Pathfinder | € 2.665.564 | 2022 | Details |
Pharmaco-modulation of epithelia for induction of antimicrobial peptide expression: a disruptive approach to fight antibiotic resistanceMaxImmun aims to develop innovative molecules that enhance antimicrobial peptides to combat infections and antibiotic resistance, progressing towards clinical trials. | EIC Pathfinder | € 3.194.450 | 2024 | Details |
Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradication
BactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria.
A novel combination treatment effective against all multidrug-resistant pathogens deemed as a critical priority by the WHO
Developing a combination of meropenem and ANT3310 to combat drug-resistant Gram-negative infections, aiming for market approval by 2029 and projected sales over €10bn in 13 years.
Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infections
LeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations.
Pharmaco-modulation of epithelia for induction of antimicrobial peptide expression: a disruptive approach to fight antibiotic resistance
MaxImmun aims to develop innovative molecules that enhance antimicrobial peptides to combat infections and antibiotic resistance, progressing towards clinical trials.