Approaching 20% emission efficiency in the NIR-II region with radical chromophores
The ARCHIMEDES project aims to develop stable, light-emitting radicals for enhanced NIR-II fluorescence imaging with high efficiency and circularly polarized luminescence for advanced biological applications.
Projectdetails
Introduction
The applications of light-based technologies in modern society cannot be underestimated. Some well-known examples of these include organic light-emitting diodes, fluorescent sensors, organic photovoltaics, and fluorescence imaging.
Emissive Radicals
Emissive radicals have recently appeared as promising and entirely new building blocks for these technologies. This breakthrough is due to the fact that their electron spins at the lowest excited state and ground state are both doublets. The transition from the lowest excited state to the ground state is not hindered by being a spin-forbidden reaction, which allows for higher operational efficiencies.
NIR-II Imaging
Additionally, compared with both classical fluorescence microscopy and infrared imaging methods (750-900 nm), imaging in the second near-infrared window (NIR-II, 1000-1700 nm) allows for both deeper tissue penetration and a higher signal-to-noise ratio. The applicability of NIR-II emitters can be bolstered through combination with circularly polarized luminescence (CPL), which is the differential emission of left and right polarized light.
Project Goals
The overarching goal of this project is to uncover a strategy to create radicals which at the same time:
- Strongly emit light in the NIR-II region;
- Are stable under ambient conditions;
- Strongly absorb light;
- Display large circularly polarized luminescence.
Primary Objective
The primary objective of ARCHIMEDES is to deliver breakthrough organic materials possessing large fluorescence quantum yields and stable radical structures in the integrated fields of molecular design, chromophore synthesis, and fluorescence imaging of living cells.
Realization of ARCHIMEDES
The realization of ARCHIMEDES will be based on both expanding the chemical space of stable, emissive C-centered radicals and on heretofore nonexisting emissive nitroxide radicals. The synergistic effects of increased brightness of NIR-II dyes and the higher sensitivity and resolution offered by CPL fluorophores will provide quality fluorescence imaging on a previously unthinkable level.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.825 |
Totale projectbegroting | € 2.499.825 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- INSTITUTE OF ORGANIC CHEMISTRY - POLISH ACADEMY OF SCIENCESpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Theory and principles of luminescent organic radical materials for OLED and sensor applicationsThis project aims to enhance OLED efficiency by incorporating quartet states in organic luminescent radicals and develop innovative ratiometric sensors and anti-counterfeiting labels using eco-friendly materials. | ERC Starting... | € 1.500.000 | 2024 | Details |
Engineering of Superfluorescent Nanocrystal SolidsPROMETHEUS aims to engineer light-emitting colloidal nanocrystal solids for enhanced cooperative emission, advancing quantum technologies and materials science through innovative synthesis and spectroscopy techniques. | ERC Starting... | € 1.875.938 | 2023 | Details |
Designing organic molecules as platforms for reversible charge-to-spin conversion with applications in chromophore optimisation and drug discoveryThis project aims to explore reversible diradical formation in donor-acceptor organic molecules to enhance light-emitting materials and drug discovery through novel design criteria. | ERC Starting... | € 1.498.361 | 2024 | Details |
Short-wave Infrared Light emitters based on Colloidal Quantum Dot TechnologyThe SWIRL project aims to develop low-cost, high-performance SWIR optical sources using colloidal quantum dot technology for applications in automotive imaging and health monitoring. | ERC Proof of... | € 150.000 | 2022 | Details |
Enhancing the Potential of Enzymatic Catalysis with LightPHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions. | ERC Advanced... | € 2.945.000 | 2024 | Details |
Theory and principles of luminescent organic radical materials for OLED and sensor applications
This project aims to enhance OLED efficiency by incorporating quartet states in organic luminescent radicals and develop innovative ratiometric sensors and anti-counterfeiting labels using eco-friendly materials.
Engineering of Superfluorescent Nanocrystal Solids
PROMETHEUS aims to engineer light-emitting colloidal nanocrystal solids for enhanced cooperative emission, advancing quantum technologies and materials science through innovative synthesis and spectroscopy techniques.
Designing organic molecules as platforms for reversible charge-to-spin conversion with applications in chromophore optimisation and drug discovery
This project aims to explore reversible diradical formation in donor-acceptor organic molecules to enhance light-emitting materials and drug discovery through novel design criteria.
Short-wave Infrared Light emitters based on Colloidal Quantum Dot Technology
The SWIRL project aims to develop low-cost, high-performance SWIR optical sources using colloidal quantum dot technology for applications in automotive imaging and health monitoring.
Enhancing the Potential of Enzymatic Catalysis with Light
PHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Chiral Light Emitting Diodes based in Photonic ArchitecturesRADIANT aims to develop cost-efficient chiral LEDs using scalable metasurfaces for enhanced optical properties, revolutionizing display, communication, and lighting technologies. | EIC Pathfinder | € 3.654.473 | 2024 | Details |
Breaking the Resolution Limit in Two-Photon Microscopy Using Negative PhotochromismThis project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities. | EIC Pathfinder | € 2.266.125 | 2023 | Details |
NanoElectroMechanical Infrared Light for Industrial and Environmental SensingDeveloping the NEMILIE uncooled IR sensor to achieve market readiness, offering high sensitivity at room temperature for diverse applications without the need for cryogenic cooling. | EIC Transition | € 2.223.128 | 2022 | Details |
Strong-coupling-enhanced nanoparticle array organic light emitting diodeThe project aims to enhance OLED efficiency using plasmonic nanostructures to achieve over 50% quantum efficiency, making them competitive with inorganic LEDs while reducing environmental impact. | EIC Pathfinder | € 2.728.446 | 2023 | Details |
moleculAR maTerials for on-chip intEgrated quantuM lIght sourceSARTEMIS aims to develop versatile metallorganic photon sources for quantum technologies, enhancing performance and integration through advanced synthesis and nano-photonics engineering. | EIC Pathfinder | € 3.247.100 | 2023 | Details |
Chiral Light Emitting Diodes based in Photonic Architectures
RADIANT aims to develop cost-efficient chiral LEDs using scalable metasurfaces for enhanced optical properties, revolutionizing display, communication, and lighting technologies.
Breaking the Resolution Limit in Two-Photon Microscopy Using Negative Photochromism
This project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities.
NanoElectroMechanical Infrared Light for Industrial and Environmental Sensing
Developing the NEMILIE uncooled IR sensor to achieve market readiness, offering high sensitivity at room temperature for diverse applications without the need for cryogenic cooling.
Strong-coupling-enhanced nanoparticle array organic light emitting diode
The project aims to enhance OLED efficiency using plasmonic nanostructures to achieve over 50% quantum efficiency, making them competitive with inorganic LEDs while reducing environmental impact.
moleculAR maTerials for on-chip intEgrated quantuM lIght sourceS
ARTEMIS aims to develop versatile metallorganic photon sources for quantum technologies, enhancing performance and integration through advanced synthesis and nano-photonics engineering.