NanoElectroMechanical Infrared Light for Industrial and Environmental Sensing
Developing the NEMILIE uncooled IR sensor to achieve market readiness, offering high sensitivity at room temperature for diverse applications without the need for cryogenic cooling.
Projectdetails
Introduction
The reliable and quantitative sensing of light is a fundamental task ubiquitous to modern technology. The infrared (IR) region of the electromagnetic spectrum hosts a wealth of intriguing interactions between radiation and matter, which are of particular interest for a wide range of applications including:
- Environmental
- Biological
- Chemical
- Pharmaceutical
- Food & Agriculture
Challenges in IR Sensing
Because of the low energy of IR photons, cryogenic cooling is required in order to reach the requisite high sensitivities in the mid- and far-IR.
Development of NEMILIE
In our ERC PoC work (NIRD), we developed an uncooled IR sensor prototype based on a nanoelectromechanical system (NEMS), called NEMILIE, which can reach unprecedented sensitivity at room temperature.
Market Disruption
This radically new IR detector technology disrupts the IR detectors market with an innovative high-sensitivity solution able to reduce costs and penetrate industrial markets where cryogenic cooling is uncommon and impractical, opening an array of new possibilities.
Goals
Our overall goal is to go beyond the proof of concept, bring our NEMILIE technology to maturity and achieve market readiness, thereby successfully transitioning our ERC PoC technology to market.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.223.128 |
Totale projectbegroting | € 2.223.128 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- INVISIBLE-LIGHT LABS GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The world’s most sensitive absorption microscopeQlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027. | EIC Transition | € 2.480.000 | 2024 | Details |
The world’s most sensitive absorption microscope
QlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Short-wave Infrared Light emitters based on Colloidal Quantum Dot TechnologyThe SWIRL project aims to develop low-cost, high-performance SWIR optical sources using colloidal quantum dot technology for applications in automotive imaging and health monitoring. | ERC Proof of... | € 150.000 | 2022 | Details |
Universal Platform for Infra-Red ImagingUPIRI aims to revolutionize IR visualization by developing a compact nanoscale layer for standard cameras to simultaneously detect all IR bands and convert them to visible light. | ERC Consolid... | € 2.999.999 | 2025 | Details |
UNIVERSAL SENSOR BASED ON ELECTRICALLY-PUMPED MID-INFRARED SPECTROMETER ON SILICON CHIPSUNISON aims to develop a compact, high-performance mid-IR spectroscopy platform for detecting greenhouse and toxic gases, enabling widespread use in IoT applications. | EIC Pathfinder | € 2.998.045 | 2024 | Details |
Nanomaterials for Infrared Silicon PhotonicsNOMISS aims to develop cost-effective, small-footprint printable IR opto-electronics using non-restricted colloidal quantum dots for enhanced light emission and integration with photonic circuits. | ERC Starting... | € 1.667.410 | 2022 | Details |
Chip-scALe visiBLE-iNfrared imaGing sEnsorCHEERS aims to develop a cost-effective multi-spectral image sensor for automotive safety systems, enhancing visibility in harsh conditions to reduce road accidents. | EIC Accelerator | € 2.498.402 | 2024 | Details |
Short-wave Infrared Light emitters based on Colloidal Quantum Dot Technology
The SWIRL project aims to develop low-cost, high-performance SWIR optical sources using colloidal quantum dot technology for applications in automotive imaging and health monitoring.
Universal Platform for Infra-Red Imaging
UPIRI aims to revolutionize IR visualization by developing a compact nanoscale layer for standard cameras to simultaneously detect all IR bands and convert them to visible light.
UNIVERSAL SENSOR BASED ON ELECTRICALLY-PUMPED MID-INFRARED SPECTROMETER ON SILICON CHIPS
UNISON aims to develop a compact, high-performance mid-IR spectroscopy platform for detecting greenhouse and toxic gases, enabling widespread use in IoT applications.
Nanomaterials for Infrared Silicon Photonics
NOMISS aims to develop cost-effective, small-footprint printable IR opto-electronics using non-restricted colloidal quantum dots for enhanced light emission and integration with photonic circuits.
Chip-scALe visiBLE-iNfrared imaGing sEnsor
CHEERS aims to develop a cost-effective multi-spectral image sensor for automotive safety systems, enhancing visibility in harsh conditions to reduce road accidents.