Targeting cancer with mutanome based stem cell vaccine
MUTAVAC aims to enhance IPVAC, an innovative cancer immunotherapy leveraging iPSC technology, by uncovering its mechanisms, improving immunogenicity, and paving the way for personalized cancer vaccines.
Projectdetails
Introduction
The successful application of immune checkpoint inhibitors has modified the therapeutic strategies in several cancers, but only 30% of patients will respond optimally to these therapies. One of the reasons for the failure of these therapies is the resistance of cancer stem cells (CSCs), leading to relapses long after the initial treatment.
Resistance of Cancer Stem Cells
These cells are also resistant to conventional therapies via their quiescence, and there are no targeted therapies available against them.
IPSIRIUS Overview
The ambition of IPSIRIUS, a French biotechnology company and spinoff of INSERM and Paris Saclay University, is to develop active cancer immunotherapy products based on the revolutionary induced pluripotent stem cell (iPSC) technology. IPSIRIUS developed the first IPVAC, with the aim of leveraging the patient’s immune system against a large panel of cancer antigens that are shared between iPSCs and CSCs.
IPVAC Technology
With IPVAC, IPSIRIUS is developing a ground-breaking technology, having resolved all technical issues limiting cell-based therapies used for cancer. IPVAC is a safe, allogenic, off-the-shelf therapy that is highly scalable using a versatile technology. This cell-based vaccination strategy has shown efficacy in both prophylactic and therapeutic settings against aggressive solid cancers with stemness features.
Goals of the MUTAVAC Project
The overall goal of the MUTAVAC project is to:
- Uncover the mechanisms of action of IPVAC.
- Generate a highly immunogenic version of IPVAC.
- Design robust in vitro immunogenicity tests to predict the immunogenicity of IPVAC and IPVAC-Mut in humans.
Objectives of IPSIRIUS
With the MUTAVAC project, IPSIRIUS aims to:
- Strengthen the scientific data on IPVAC to prepare for its clinical development, leading to open access publications and patents.
- Define a personalized medicine to propose an efficient therapeutic cancer vaccine for patients with all HLA groups.
- Identify new targets for future cancer therapies.
- Develop a technological platform to facilitate the development of the next generation of cell therapies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.782.000 |
Totale projectbegroting | € 1.809.500 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- IPSIRIUSpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
AI-powered platform for autologous iPSC manufacturingThe project aims to develop an AI-guided microfluidic device for the standardized, cost-effective mass production of personalized iPSCs to enhance cancer therapies and tissue regeneration. | EIC Pathfinder | € 3.999.225 | 2022 | Details |
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapiesThe HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML. | EIC Pathfinder | € 3.798.713 | 2023 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
NOn-VIral gene modified STEM cell therapyThis project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application. | EIC Pathfinder | € 3.644.418 | 2022 | Details |
AI-powered platform for autologous iPSC manufacturing
The project aims to develop an AI-guided microfluidic device for the standardized, cost-effective mass production of personalized iPSCs to enhance cancer therapies and tissue regeneration.
Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies
The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.
NOn-VIral gene modified STEM cell therapy
This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC Proof of... | € 150.000 | 2023 | Details |
Synergistic Antitumor Activity of Microbiome and OMV-based in situ VaccinationThe project aims to enhance immunotherapy by combining intratumoral injection of engineered bacterial OMVs with oral Bifidobacterium to boost anti-tumor immunity and improve treatment efficacy. | ERC Proof of... | € 150.000 | 2023 | Details |
Targeting Cancer with ERV VaccinesInProTher is developing BreakImmune, an immunotherapy targeting HERVs to create a cancer vaccine (IPT001) that enhances immune responses against solid tumors. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Patiënt specifieke immunotherapie voor de behandeling van alvleesklierkankerDe ontwikkeling van een gepersonaliseerde immunotherapie voor alvleesklierkanker om de overlevingskansen van patiënten te verbeteren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Developing the next generation of cis-targeting macrophage-T cell cancer immunotherapiesThis project aims to develop dual-modulatory agents to enhance anti-tumor immune responses in cancer immunotherapy while minimizing side effects, seeking proof-of-concept validation. | ERC Proof of... | € 150.000 | 2023 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Synergistic Antitumor Activity of Microbiome and OMV-based in situ Vaccination
The project aims to enhance immunotherapy by combining intratumoral injection of engineered bacterial OMVs with oral Bifidobacterium to boost anti-tumor immunity and improve treatment efficacy.
Targeting Cancer with ERV Vaccines
InProTher is developing BreakImmune, an immunotherapy targeting HERVs to create a cancer vaccine (IPT001) that enhances immune responses against solid tumors.
Patiënt specifieke immunotherapie voor de behandeling van alvleesklierkanker
De ontwikkeling van een gepersonaliseerde immunotherapie voor alvleesklierkanker om de overlevingskansen van patiënten te verbeteren.
Developing the next generation of cis-targeting macrophage-T cell cancer immunotherapies
This project aims to develop dual-modulatory agents to enhance anti-tumor immune responses in cancer immunotherapy while minimizing side effects, seeking proof-of-concept validation.