From Research Optoacoustic Novelty To Imaging Established in Routine diagnostics
FRONTIER aims to translate the innovative MSOT technology into routine clinical imaging, enhancing disease diagnosis and treatment monitoring for clinicians globally.
Projectdetails
Introduction
Multispectral optoacoustic tomography (MSOT) is an innovative biomedical imaging technology that allows for molecular imaging in deep tissue. This noninvasive technology enables assessment of the concentration and distribution of a variety of clinically important molecules in the body and uniquely delivers information of e.g. oxygenation, inflammation, and fibrotic changes.
Scientific and Clinical Value
MSOT has already demonstrated significant scientific and clinical value across a range of diseases and applications, making it a promising tool to diagnose diseases and monitor treatment response.
Current Limitations
Despite these early successes, the technology is not yet commercially viable on the broad clinical market and currently remains effectively confined to a research environment.
Project Goals
FRONTIER will provide iThera Medical the means to translate an optimized MSOT system (MSOT Frontier) from a research environment to application in routine clinical imaging, thereby providing clinicians worldwide a powerful new diagnostic tool.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.451.121 |
Totale projectbegroting | € 3.581.601 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- ITHERA MEDICAL GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Real-time multi-spectral imaging for accurate detection of cancerous tissue in endoscopic surgeryThericon is developing an rMSI platform to enhance endoscopic cancer surgery by providing multi-parametric imaging for better tissue differentiation and reducing cancer recurrence, seeking funding for market launch in 2024. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Real-time multi-spectral imaging for accurate detection of cancerous tissue in endoscopic surgery
Thericon is developing an rMSI platform to enhance endoscopic cancer surgery by providing multi-parametric imaging for better tissue differentiation and reducing cancer recurrence, seeking funding for market launch in 2024.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
FunctIonal optoacousticS for imaging Early onsEt of Gut inflammationThis project aims to develop functionalized contrast agents for multispectral optoacoustic tomography to enable non-invasive early detection of gastrointestinal inflammation. | ERC Starting... | € 1.453.730 | 2023 | Details |
Breaking the penetration limit of microscopy – Photoswitching OptoacousticsSWOPT aims to revolutionize in vivo imaging by combining optoacoustic imaging and photoswitching to visualize individual cells deep within tissues, enhancing research in life sciences and biomedicine. | EIC Pathfinder | € 3.536.935 | 2022 | Details |
ADAPTIVE OPTICAL METASURFACES FOR REAL-TIME, LABEL-FREE AND NON-DESTRUCTIVE 7D DIGITAL PATHOLOGYOPTIPATH aims to revolutionize tissue diagnosis by providing real-time, non-destructive 3D imaging using advanced optical technologies and machine learning to enhance accuracy and reduce variability. | EIC Pathfinder | € 3.276.577 | 2025 | Details |
MULTIMODE NONLINEAR FIBER BASED ENDOSCOPIC IMAGING AND TREATMENTMULTISCOPE aims to revolutionize optical diagnostics and therapy by developing a dual-function endoscopic device for real-time optical biopsy and cold atmospheric plasma treatment in gastrointestinal care. | EIC Pathfinder | € 2.863.733 | 2024 | Details |
Multivariate optoacoustic sensor for longitudinal diabetes monitoringMOSAIC aims to develop a portable, non-invasive optoacoustic sensor powered by explainable AI to monitor diabetes, enhancing early detection and treatment while reducing healthcare costs. | EIC Pathfinder | € 2.997.921 | 2025 | Details |
FunctIonal optoacousticS for imaging Early onsEt of Gut inflammation
This project aims to develop functionalized contrast agents for multispectral optoacoustic tomography to enable non-invasive early detection of gastrointestinal inflammation.
Breaking the penetration limit of microscopy – Photoswitching Optoacoustics
SWOPT aims to revolutionize in vivo imaging by combining optoacoustic imaging and photoswitching to visualize individual cells deep within tissues, enhancing research in life sciences and biomedicine.
ADAPTIVE OPTICAL METASURFACES FOR REAL-TIME, LABEL-FREE AND NON-DESTRUCTIVE 7D DIGITAL PATHOLOGY
OPTIPATH aims to revolutionize tissue diagnosis by providing real-time, non-destructive 3D imaging using advanced optical technologies and machine learning to enhance accuracy and reduce variability.
MULTIMODE NONLINEAR FIBER BASED ENDOSCOPIC IMAGING AND TREATMENT
MULTISCOPE aims to revolutionize optical diagnostics and therapy by developing a dual-function endoscopic device for real-time optical biopsy and cold atmospheric plasma treatment in gastrointestinal care.
Multivariate optoacoustic sensor for longitudinal diabetes monitoring
MOSAIC aims to develop a portable, non-invasive optoacoustic sensor powered by explainable AI to monitor diabetes, enhancing early detection and treatment while reducing healthcare costs.