Automated production process for next-level redox flow battery stacks and modules following a revolutionary different and cost-optimised production approach
VANEVO aims to revolutionize redox flow battery production through innovative assembly processes, enhancing cost-efficiency and sustainability for long-duration energy storage solutions.
Projectdetails
Introduction
To meet climate targets, the worldwide increase of renewable energies is inevitable. While the increase of renewables in the past years was backed up with fossil fuel-based generators, the future electricity generation systems will rely on CO2-free energy storage devices to bridge the shortfall times from wind and solar. Consequently, efficient use of renewables goes hand in hand with cost-efficient and reliable long-duration stationary storage systems.
Market Demands
The new markets for long-duration stationary storage systems demand:
- Lowest cost per cycle (LCOS)
- Sustainability
- Safety
These criteria are at best fulfilled by redox flow batteries.
VANEVO Innovations
VANEVO (https://www.vanevo.de/home) invented new components for various kinds of redox flow batteries – including future concepts.
VANEVO patented a revolutionary different innovative battery stack assembly process with significant cost reductions and intends to automate the stack and module production for redox flow batteries.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.680.875 |
Totale projectbegroting | € 2.426.250 |
Tijdlijn
Startdatum | 1-2-2023 |
Einddatum | 31-1-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- VANEVO GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Cheaper, better batteries from common, safe and available raw materialsBroadBit aims to revolutionize the battery industry with new sodium-based technology and a clean production process to enable the transition to renewable energy and reduce carbon emissions. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Increasing the efficiency, sustainability and lifecycles of battery systems through advanced module-level power electronicsSTABL's SMART BATTERY innovation enhances battery lifespan and efficiency, aiming to reduce waste and support the EU's renewable energy and GHG reduction goals by 2030. | EIC Accelerator | € 2.052.714 | 2022 | Details |
Automated Lithium-Ion battery upcycling process using robotics and computer vision to deliver sustainable energy storage at scaleCircu Li-ion aims to enhance battery sustainability by automating upcycling and recycling, recovering over 80% of usable cells, doubling battery lifespan, and cutting emissions by 80%. | EIC Accelerator | € 2.481.705 | 2023 | Details |
Cheaper, better batteries from common, safe and available raw materials
BroadBit aims to revolutionize the battery industry with new sodium-based technology and a clean production process to enable the transition to renewable energy and reduce carbon emissions.
Increasing the efficiency, sustainability and lifecycles of battery systems through advanced module-level power electronics
STABL's SMART BATTERY innovation enhances battery lifespan and efficiency, aiming to reduce waste and support the EU's renewable energy and GHG reduction goals by 2030.
Automated Lithium-Ion battery upcycling process using robotics and computer vision to deliver sustainable energy storage at scale
Circu Li-ion aims to enhance battery sustainability by automating upcycling and recycling, recovering over 80% of usable cells, doubling battery lifespan, and cutting emissions by 80%.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Redox-mediated hybrid zinc-air flow batteries for more resilient integrated power systemsReZilient aims to develop a novel Zn-air flow battery for long-duration energy storage, enhancing grid reliability and reducing costs with a focus on improved efficiency and sustainability. | EIC Pathfinder | € 3.998.856 | 2023 | Details |
Redox flow batteries charging tomorrow’s world through the in-depth understanding and enhanced control over battery hydrodynamicsRECHARGE aims to revolutionize redox flow batteries by integrating pulsatile flow and 3D electrodes to enhance power density and efficiency, targeting 1000 mW/cm² and over 85% roundtrip efficiency. | ERC Starting... | € 1.498.614 | 2024 | Details |
Energy storage with bulk liquid redox materialsThe OMICON project aims to develop low molecular weight organic redox materials for efficient, environmentally friendly energy storage in redox flow batteries, enhancing energy density and sustainability. | ERC Proof of... | € 150.000 | 2022 | Details |
MEDIATED BIPHASIC BATTERYThe MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials. | EIC Pathfinder | € 2.508.694 | 2022 | Details |
Associative metal-free ElectROlytes for Battery Energy STorageThe AERO BEST project aims to revolutionize battery energy storage by developing metal-free electrolytes for sustainable, cost-effective, and air-stable systems, enhancing accessibility and reducing geopolitical risks. | ERC Proof of... | € 150.000 | 2024 | Details |
Redox-mediated hybrid zinc-air flow batteries for more resilient integrated power systems
ReZilient aims to develop a novel Zn-air flow battery for long-duration energy storage, enhancing grid reliability and reducing costs with a focus on improved efficiency and sustainability.
Redox flow batteries charging tomorrow’s world through the in-depth understanding and enhanced control over battery hydrodynamics
RECHARGE aims to revolutionize redox flow batteries by integrating pulsatile flow and 3D electrodes to enhance power density and efficiency, targeting 1000 mW/cm² and over 85% roundtrip efficiency.
Energy storage with bulk liquid redox materials
The OMICON project aims to develop low molecular weight organic redox materials for efficient, environmentally friendly energy storage in redox flow batteries, enhancing energy density and sustainability.
MEDIATED BIPHASIC BATTERY
The MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials.
Associative metal-free ElectROlytes for Battery Energy STorage
The AERO BEST project aims to revolutionize battery energy storage by developing metal-free electrolytes for sustainable, cost-effective, and air-stable systems, enhancing accessibility and reducing geopolitical risks.