Catalysis for Cancer Treatment.
Cat4CanCenter aims to develop innovative metal-based catalysts and lipid nanoparticle delivery systems to create effective therapies for glioblastoma, overcoming current treatment challenges.
Projectdetails
Introduction
The increased incidence and mortality of tumors that do not respond to standard of care or other targeted therapies is a major challenge in the clinical management of these cancer patients. In order to provide innovative therapeutic avenues for treatment-refractory patients, it is urgent to develop novel mechanisms of anticancer drug modes of action that will overcome the drawbacks of current therapies.
Project Overview
In Cat4CanCenter, we will merge the research fields of metal-based catalysis for drug development and innovative delivery routes with cancer biology and immunology. This will be applied to one of the deadliest cancers, glioblastoma (GBM), a fatal primary brain tumor for which no curative therapy exists, due to its location within the brain parenchyma and complex tumor microenvironment.
Challenges in Treatment
Many potential drugs have failed in the clinic due to their inherent toxicity and off-target side effects, which add to the challenges in reaching the protected brain site. Recently, innovative catalyst design has enabled synthetic transformations in the presence of biological molecules.
Innovative Approaches
In Cat4CanCenter, we will develop four innovative approaches to treat GBM. This new methodology requires the design of cage-protected catalysts that will be delivered to targeted cell types using advanced lipid nanoparticle technology. The catalysts will convert nontoxic prodrugs into active drugs within the GBM bulk.
Strategy and Goals
Our groundbreaking strategy aims for successful therapies to treat glioblastoma by developing complementary approaches to therapeutically tackle the complexity of this disease. The new strategies, catalysts, and prodrugs will be explored in this project.
Collaborative Program
In this project, we explore a new avenue to treat glioblastoma, which is the most difficult cancer to target. In a collaborative program, we develop biomimetic transition metal catalysts (key expertise 1) that will be delivered using smart strategies such as lipid nanoparticles (key expertise 2) to generate cancer drugs in vivo. The glioblastoma biology will be studied in detail (key expertise 3).
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 10.603.994 |
Totale projectbegroting | € 10.603.994 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT VAN AMSTERDAMpenvoerder
- UNIVERSITEIT LEIDEN
- STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Leveraging Polymer Therapeutics as Nanomedicine for Local Glioblastoma ImmunotherapyGLIOMERS aims to develop a brain-penetrating polymeric drug delivery system to enhance immunotherapy efficacy for glioblastoma by localizing treatment and stimulating antitumor immunity. | ERC Starting... | € 1.498.175 | 2025 | Details |
Multimodal “4D”-therapy of pediatric high grade gliomaThis project aims to develop a novel multimodal treatment strategy for pediatric high-grade glioma by combining targeted therapies, gene therapy, and CAR-T cells to improve patient outcomes. | ERC Starting... | € 1.493.711 | 2024 | Details |
Deciphering METAstasis of lung cancer to BRAIN and developing new therapeutic approaches via a human metastatic cascade platformMETA-BRAIN aims to develop a human-based in vitro model to study cancer brain metastasis, the role of the blood-brain barrier, and create targeted drug delivery systems for effective treatment. | ERC Starting... | € 1.500.000 | 2024 | Details |
Tumor recurrence and therapeutic resistance: exploring and exploiting the post-radiotherapy brain microenvironment for therapeutic opportunities in malignant brain tumorsThis project aims to target the irradiated microenvironment of recurrent glioblastoma by integrating advanced sequencing methods and high-throughput screening to discover novel therapeutic strategies. | ERC Consolid... | € 1.999.444 | 2022 | Details |
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trialsThis project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells. | ERC Starting... | € 1.948.125 | 2024 | Details |
Leveraging Polymer Therapeutics as Nanomedicine for Local Glioblastoma Immunotherapy
GLIOMERS aims to develop a brain-penetrating polymeric drug delivery system to enhance immunotherapy efficacy for glioblastoma by localizing treatment and stimulating antitumor immunity.
Multimodal “4D”-therapy of pediatric high grade glioma
This project aims to develop a novel multimodal treatment strategy for pediatric high-grade glioma by combining targeted therapies, gene therapy, and CAR-T cells to improve patient outcomes.
Deciphering METAstasis of lung cancer to BRAIN and developing new therapeutic approaches via a human metastatic cascade platform
META-BRAIN aims to develop a human-based in vitro model to study cancer brain metastasis, the role of the blood-brain barrier, and create targeted drug delivery systems for effective treatment.
Tumor recurrence and therapeutic resistance: exploring and exploiting the post-radiotherapy brain microenvironment for therapeutic opportunities in malignant brain tumors
This project aims to target the irradiated microenvironment of recurrent glioblastoma by integrating advanced sequencing methods and high-throughput screening to discover novel therapeutic strategies.
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trials
This project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy. | EIC Pathfinder | € 5.972.875 | 2024 | Details |
PRO CellecTPan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren. | Mkb-innovati... | € 20.000 | 2021 | Details |
Anticancer approach based on the Metabolic Disruption of Cancer Stem Cells with high effectivity across a wide range of solid tumoursThe project aims to develop the novel anticancer agent IGN116, targeting cancer stem cells in CRC and PDAC, to provide effective treatment with low toxicity, benefiting thousands of patients by 2040. | EIC Transition | € 2.498.015 | 2025 | Details |
Clinical validation of NANO-PL: a hydrogel-based formulation of a small molecule for a highly targeted therapy against Glioblastoma Multiforme (GBM)NANO-PL is a hydrogel-based, one-time treatment for glioblastoma that shows promising safety and efficacy, including tumor eradication and improved survival rates in preclinical models. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Clinical validation of GLIX1: a small molecule that targets epigenetic changes in cancer cells to treat glioblastoma multiforme (GBM), the highest global unmet need in oncology.GLIX1, a novel therapy targeting deregulated mechanisms in GBM, shows promising tumor regression in preclinical studies and aims for clinical validation to improve patient outcomes. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.
NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy.
PRO CellecT
Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.
Anticancer approach based on the Metabolic Disruption of Cancer Stem Cells with high effectivity across a wide range of solid tumours
The project aims to develop the novel anticancer agent IGN116, targeting cancer stem cells in CRC and PDAC, to provide effective treatment with low toxicity, benefiting thousands of patients by 2040.
Clinical validation of NANO-PL: a hydrogel-based formulation of a small molecule for a highly targeted therapy against Glioblastoma Multiforme (GBM)
NANO-PL is a hydrogel-based, one-time treatment for glioblastoma that shows promising safety and efficacy, including tumor eradication and improved survival rates in preclinical models.
Clinical validation of GLIX1: a small molecule that targets epigenetic changes in cancer cells to treat glioblastoma multiforme (GBM), the highest global unmet need in oncology.
GLIX1, a novel therapy targeting deregulated mechanisms in GBM, shows promising tumor regression in preclinical studies and aims for clinical validation to improve patient outcomes.