Wrap It Up: Deciphering experience-dependent myelin growth across development.
WRAPPED aims to investigate the role of myelin in human learning across the lifespan using advanced MRI technology to enhance understanding of brain plasticity and its implications for disorders.
Projectdetails
Introduction
Humans start life fully dependent on the care of others, yet we go on to acquire skills no other species is capable of. What is the biological basis of this remarkable plasticity? Animal studies suggest a critical role of myelin in learning and brain plasticity, while post-mortem assessments of the human brain show that myelin maturation, which is completed around birth in other species, continues until adulthood. How does this uniquely protracted myelin development enable and constrain our aptitude for learning? WRAPPED will answer this critical question by assessing changes in myelin during learning at different developmental stages.
Advances in MRI Technology
Recent critical advances in MRI technology now provide the unprecedented opportunity to compare myelin levels within the living human brain over time and between individuals, making it possible to probe the role of myelin in human learning for the first time.
Research Approach
Seizing this opportunity, WRAPPED will assess learning-related changes in myelin using an innovative two-pronged approach that combines:
- Local longitudinal studies
- The analysis of large-scale open data
Critically, WRAPPED will not only evaluate adults but will also probe the entire developmental lifespan to show how myelin changes as:
- Infants learn to crawl
- Children enter school
- Children, young adults, and older adults acquire the same novel skills (juggling and reading Chinese)
Impact on Understanding Myelin Changes
This ambitious developmental focus will be transformative for our understanding of the interactions between maturational and learning-related changes in myelin.
Conclusion
Thereby, WRAPPED will elucidate the biological basis of the unique human learning trajectory that allows us to establish and maintain complex cultures. This characterization of healthy human brain plasticity, in turn, will serve as a vital reference point for understanding psychological and neurological disorders linked to alterations in myelin, such as schizophrenia, autism, and childhood learning disabilities.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.497.540 |
Totale projectbegroting | € 1.497.540 |
Tijdlijn
Startdatum | 1-10-2025 |
Einddatum | 30-9-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- PHILIPPS UNIVERSITAET MARBURGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Uncovering the molecular mechanisms of oligodendrocyte plasticity in cognitive aging.This project aims to investigate oligodendrocyte plasticity and its role in cognitive decline with aging, using advanced techniques to identify therapeutic targets for brain rejuvenation. | ERC Starting... | € 1.498.665 | 2024 | Details |
Connectome cost conservation model of skill learningThis project aims to model brain connectomes before and after skill learning to predict neuroplasticity and behavioral outcomes, bridging neuropsychology and neurobiology. | ERC Advanced... | € 2.484.375 | 2022 | Details |
Map and manipulate sleep oscillations to reveal their role in healthy cognitive developmentThis project aims to investigate the causal relationship between sleep architecture and cognitive development in young mammals using advanced neurobiological techniques to inform therapeutic strategies for developmental disorders. | ERC Starting... | € 1.500.000 | 2024 | Details |
Advancing neuroscience by imaging BRAin Cortical fibErsThis project aims to non-invasively map cortical fibers using advanced MRI techniques to understand their role in cognitive decline and neurodegenerative diseases. | ERC Starting... | € 1.499.736 | 2025 | Details |
Dynamics of mental representations and learning in preverbal infantsThis project aims to investigate early cognitive processes in infants using advanced EEG techniques to understand information processing and conscious access, enhancing insights into early learning and cognition. | ERC Advanced... | € 2.496.700 | 2024 | Details |
Uncovering the molecular mechanisms of oligodendrocyte plasticity in cognitive aging.
This project aims to investigate oligodendrocyte plasticity and its role in cognitive decline with aging, using advanced techniques to identify therapeutic targets for brain rejuvenation.
Connectome cost conservation model of skill learning
This project aims to model brain connectomes before and after skill learning to predict neuroplasticity and behavioral outcomes, bridging neuropsychology and neurobiology.
Map and manipulate sleep oscillations to reveal their role in healthy cognitive development
This project aims to investigate the causal relationship between sleep architecture and cognitive development in young mammals using advanced neurobiological techniques to inform therapeutic strategies for developmental disorders.
Advancing neuroscience by imaging BRAin Cortical fibErs
This project aims to non-invasively map cortical fibers using advanced MRI techniques to understand their role in cognitive decline and neurodegenerative diseases.
Dynamics of mental representations and learning in preverbal infants
This project aims to investigate early cognitive processes in infants using advanced EEG techniques to understand information processing and conscious access, enhancing insights into early learning and cognition.