Unravelling the history of underSEA oceanic plateau VOLCanism and its environmental impact in Earth’s past
The SEA-VOLC Project aims to uncover the environmental impact of ancient oceanic plateaus on global change by analyzing geochemical records from past volcanic activities.
Projectdetails
Introduction
Oceanic plateaus are amongst the largest geological phenomena on Earth, and their undersea volcanic formation had profound environmental effects, such as climate warming and ocean anoxia. Whilst huge progress has been made to link their land-based counterparts, continental flood basalt provinces, with climate change and mass extinctions, oceanic plateaus have been comparatively understudied due to their limited accessibility and relatively benign ecological impact.
Environmental Impact
Yet, plateau volcanism triggered severe climatic and environmental disruption, but the precise mechanism(s) by which they influenced the Earth’s surface are unclear. Further, most known oceanic plateaus formed in the Cretaceous, with their likely existence and environmental impact earlier in Earth’s history seldom considered.
Project Overview
The SEA-VOLC Project utilizes my expertise in studying past environmental crises and geochemically fingerprinting large-scale volcanism to reconstruct the mechanism(s) by which oceanic plateaus triggered global change. For the first time, it will investigate the history and impact of older plateaus that no longer exist.
Methodology
Combining inorganic and organic geochemistry, I will create global maps of trace-metal nutrient disruption and biological productivity during times of Cretaceous and Triassic plateau activity.
Research Significance
Resolving the relative environmental impact of this process vs CO2 output and warming is critical to understand whether continental and oceanic volcanism influenced the Earth system differently, and why the former was often more lethal.
Innovative Approach
State-of-the-art geochemical proxies that have recorded Cretaceous episodes of undersea volcanism will be applied to Silurian–Devonian sedimentary archives of Cretaceous-like anoxic events. This will show whether earlier environmental crises were also linked to plateau formation for the first time.
Conclusion
Exploring this possibility provides a unique new perspective on how the Earth’s interior and its interactions with surface environments have evolved over time.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.670 |
Totale projectbegroting | € 1.499.670 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- STICHTING VUpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Testing solid earth climate connections through mid ocean ridge time seriesThis project aims to establish a high-resolution time series of mid-ocean ridge volcanism and hydrothermal activity linked to climate changes over the past 1.5 million years through sediment analysis. | ERC Synergy ... | € 13.982.850 | 2023 | Details |
Magmatic Triggering of Cenozoic Climate ChangesMATRICs aims to reconstruct magmatic CO2 emissions from the Neo-Tethyan arc to understand their impact on early Cenozoic climate through innovative geological and modeling techniques. | ERC Consolid... | € 1.999.968 | 2025 | Details |
Provenance And tranSport PathwayS of mArine proxy-bearinG particlEsThis project aims to enhance the accuracy of paleoceanographic studies by assessing hydrodynamic impacts on marine sediments and correcting climate signal biases using advanced radiocarbon techniques. | ERC Starting... | € 1.499.766 | 2022 | Details |
Virtual planets to unravel how mantle convection shapes geosphere, climate and life co-evolutionThis project aims to uncover how mantle convection influences Earth's surface environment and biodiversity through advanced 3D simulations and machine learning over geological time scales. | ERC Advanced... | € 2.144.646 | 2024 | Details |
Using lake sediments to reconstruct soil weathering trajectories over the HoloceneLAKE-SWITCH aims to develop quantitative weathering records over 100-10,000 years using isotopic proxies in Alpine lake sediments to understand human-climate impacts on the Earth's Critical Zone. | ERC Starting... | € 1.494.788 | 2022 | Details |
Testing solid earth climate connections through mid ocean ridge time series
This project aims to establish a high-resolution time series of mid-ocean ridge volcanism and hydrothermal activity linked to climate changes over the past 1.5 million years through sediment analysis.
Magmatic Triggering of Cenozoic Climate Changes
MATRICs aims to reconstruct magmatic CO2 emissions from the Neo-Tethyan arc to understand their impact on early Cenozoic climate through innovative geological and modeling techniques.
Provenance And tranSport PathwayS of mArine proxy-bearinG particlEs
This project aims to enhance the accuracy of paleoceanographic studies by assessing hydrodynamic impacts on marine sediments and correcting climate signal biases using advanced radiocarbon techniques.
Virtual planets to unravel how mantle convection shapes geosphere, climate and life co-evolution
This project aims to uncover how mantle convection influences Earth's surface environment and biodiversity through advanced 3D simulations and machine learning over geological time scales.
Using lake sediments to reconstruct soil weathering trajectories over the Holocene
LAKE-SWITCH aims to develop quantitative weathering records over 100-10,000 years using isotopic proxies in Alpine lake sediments to understand human-climate impacts on the Earth's Critical Zone.