Towards no-drift sensors with on-chip self-calibration
This project aims to develop a practical 0-drift MEMS gyroscope with self-calibration using on-chip stress measurement, significantly enhancing inertial navigation accuracy and enabling reliable indoor positioning.
Projectdetails
Introduction
Sensor drift is a major problem for inertial sensors and limits their usage in autonomous navigation applications. Inertial sensor data is integrated to find the position, and drift leads to error accumulation.
Current Approaches
A common drift suppression approach is temperature calibration, but ovenized state-of-the-art sensors still exhibit drift. Instead of using temperature as a drift indicator, I have pursued a non-conventional approach and measured on-chip stress that directly correlates with drift.
Device Interaction
The device interacts with its surroundings through the anchors, and on-chip stress accurately estimates drift. I am the leading researcher in the stress compensation field, and I have recently demonstrated that MEMS gyroscope drift could be eliminated with stress compensation.
Stability Results
My long-term stability results at 2 days of averaging are unrivaled, but the calibration algorithm is not practical. Different from temperature calibration, stress calibrating a device is difficult.
Proposed Solution
I propose a sensor system that would convert my proof of concept work into a practical 0-drift sensor with self-calibration. The proposed system consists of:
- A circular MEMS sensor with multiple (~100) distributed stress sensors and piezoelectric stress transducers
- A machine learning supported analytical calibration model
- A custom ASIC for superior noise
- An FPGA for system control and self-calibration
Expected Outcomes
If successful, the proposed approach would improve the MEMS gyroscope stability by >100X to the levels of 10^-4 – 10^-5°/h, enabling error-free, only gravity-referenced inertial navigation.
Advantages of Inertial Navigation
Unlike GPS or camera, inertial navigation works under all weather, light, and location conditions, providing a stable reference to navigation algorithms.
Future Implications
With further miniaturization, 0-drift sensors could fit into smartphones, and reliable indoor navigation would become a reality. The compact, low-cost sensor could also disrupt the precision inertial market dominated by bulky and expensive fiber-optic and laser sensors.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.650.000 |
Totale projectbegroting | € 1.650.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- BILKENT UNIVERSITESI VAKIFpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A Revolution in Rotation SensingGyroRevolution aims to develop a compact, transportable ring laser gyroscope with near-zero drift and enhanced sensitivity for applications in seismology and structural health monitoring. | ERC Proof of... | € 150.000 | 2023 | Details |
Nanoscale Integrated Magnetic Field SensorDevelop a low-cost, nano-sized magnetoresistive sensor with an extended sensing range and reduced power consumption for applications in IoT, wearables, and automotive technologies. | ERC Proof of... | € 150.000 | 2023 | Details |
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological TestingISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies. | ERC Proof of... | € 150.000 | 2023 | Details |
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During MotionThis project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases. | ERC Advanced... | € 3.499.763 | 2022 | Details |
Validation of a novel device for real-time, long-term measurement of cellular forcesCELL-FORCE aims to validate Elastic Resonator Interference Stress Microscopy for non-destructive imaging of cellular forces, enhancing research and commercial applications in cell biomechanics. | ERC Proof of... | € 150.000 | 2024 | Details |
A Revolution in Rotation Sensing
GyroRevolution aims to develop a compact, transportable ring laser gyroscope with near-zero drift and enhanced sensitivity for applications in seismology and structural health monitoring.
Nanoscale Integrated Magnetic Field Sensor
Develop a low-cost, nano-sized magnetoresistive sensor with an extended sensing range and reduced power consumption for applications in IoT, wearables, and automotive technologies.
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing
ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During Motion
This project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases.
Validation of a novel device for real-time, long-term measurement of cellular forces
CELL-FORCE aims to validate Elastic Resonator Interference Stress Microscopy for non-destructive imaging of cellular forces, enhancing research and commercial applications in cell biomechanics.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Ontwikkeling FOG traagheidsnavigatiesysteemHet project richt zich op de modernisering van Fibre Optical Gyros voor de ontwikkeling van een robuust traagheidsnavigatiesysteem, ter versterking van de nationale navigatietechnologie. | Mkb-innovati... | € 194.285 | 2019 | Details |
Quantum Motion SensorHet project ontwikkelt een innovatieve quantum motion sensor voor verbeterde versnellingsmeters, gericht op hogere gevoeligheid en integratie in navigatiesystemen voor de industrie. | Mkb-innovati... | € 199.500 | 2020 | Details |
Lichtgewicht Energiezuinige Fiber Optische IMUOntwikkeling van een lichtgewicht, energiezuinige Inertial Measurement Unit met fiber optische gyroscopen voor nauwkeurige standhoekcorrecties, gericht op kostenreductie in de lucht- en ruimtevaart. | Mkb-innovati... | € 284.918 | 2021 | Details |
Electromagnetic bearing proof of concept sensorlessInsumo onderzoekt de haalbaarheid van een sensorloos elektromagnetisch lagersysteem om kosten te verlagen en betrouwbaarheid te verhogen. | Mkb-innovati... | € 20.000 | 2022 | Details |
Miniaturized sensor system for continuous soil-nutrient monitoring based on integration of a lab-on-a-chip microfluidic cartridge with an optoelectronic detection unitDevelop a miniaturized sensor system for in-situ soil nutrient monitoring to enhance soil regeneration and support agricultural practices, targeting market readiness and potential spin-off creation. | EIC Transition | € 2.499.716 | 2022 | Details |
Ontwikkeling FOG traagheidsnavigatiesysteem
Het project richt zich op de modernisering van Fibre Optical Gyros voor de ontwikkeling van een robuust traagheidsnavigatiesysteem, ter versterking van de nationale navigatietechnologie.
Quantum Motion Sensor
Het project ontwikkelt een innovatieve quantum motion sensor voor verbeterde versnellingsmeters, gericht op hogere gevoeligheid en integratie in navigatiesystemen voor de industrie.
Lichtgewicht Energiezuinige Fiber Optische IMU
Ontwikkeling van een lichtgewicht, energiezuinige Inertial Measurement Unit met fiber optische gyroscopen voor nauwkeurige standhoekcorrecties, gericht op kostenreductie in de lucht- en ruimtevaart.
Electromagnetic bearing proof of concept sensorless
Insumo onderzoekt de haalbaarheid van een sensorloos elektromagnetisch lagersysteem om kosten te verlagen en betrouwbaarheid te verhogen.
Miniaturized sensor system for continuous soil-nutrient monitoring based on integration of a lab-on-a-chip microfluidic cartridge with an optoelectronic detection unit
Develop a miniaturized sensor system for in-situ soil nutrient monitoring to enhance soil regeneration and support agricultural practices, targeting market readiness and potential spin-off creation.