T cell regulation by fed state bacterial metabolites
This project aims to identify immunoregulatory bacterial molecules produced in response to food intake, enhancing understanding of gut microbiome tolerance mechanisms and their impact on intestinal health.
Projectdetails
Introduction
Intestinal microbial communities expand the functional capabilities of the host via their metabolic attributes. From energy harvest to the production of vitamins, the gut microbiota shapes mammalian physiology and is often considered a postnatally developed “organ.” Yet, the microbiome poses a formidable challenge to the immune system: How can we host trillions of bacteria without mounting an inflammatory response?
Gut Immune Homeostasis
Gut immune homeostasis relies on the balanced action of suppressive and inflammatory T cell subsets. I discovered that bacterial metabolism of bile acids and dietary fibers promotes the differentiation of suppressive T cells. Given the complexity of the microbiome, finding other immunoregulatory cues deployed by gut bacteria and their mechanisms of action remains a major challenge, and the logic behind these tolerance mechanisms is not understood.
Research Framework
I will use a novel conceptual framework to bridge this gap: based on my previous findings, I postulate that immunoregulatory bacterial molecules are produced in response to food intake. Within this emerging paradigm, I selected two new groups of bacterial molecules for immediate investigation and developed a strategy to identify novel putative immunoregulatory candidates based on a careful examination of microbial metabolism after food intake.
Methodology
- I will find the molecular targets of active molecules using chemical screening and chemoproteomic methods.
- I will test metabolites in vivo by colonizing germ-free mice with genetically manipulated bacterial strains.
Expertise and Collaboration
The proposed work is grounded on my strong expertise in host-microbe interactions and takes advantage of the state-of-the-art biochemistry facilities at my hosting institution and of the complementary skillsets of my collaboration network. This synergistic combination will allow for a comprehensive interrogation of immunological tolerance to gut commensals: from metabolites and their molecular targets to their functional relevance for intestinal health.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.548 |
Totale projectbegroting | € 1.499.548 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Resolving metabolic interactions between the gut microbiota and the host with multi-omics-based modellingThis project aims to systematically characterize gut bacteria interactions and their metabolic contributions to host health using experimental and computational methods, enabling targeted microbiota interventions. | ERC Starting... | € 1.499.323 | 2024 | Details |
Engineered symbionts elucidate gut T cell memory and its (dys)regulationThe GuT Memory project aims to uncover the mechanisms of microbiota-directed Th cell memory to enhance vaccine design and target pathogenic T cells in inflammatory bowel disease. | ERC Starting... | € 1.600.683 | 2024 | Details |
Microbiota-T cell interactions - antigen-specificity and regulation in health and diseaseThis project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies. | ERC Starting... | € 1.500.000 | 2022 | Details |
Dissection of the host-microbe crosstalk that controls metabolism and physiology in intestinal symbiosisThis project aims to explore the regulatory mechanisms of intestinal bacteria and their symbiotic relationship with hosts using Drosophila to enhance understanding of gut metabolism and health. | ERC Starting... | € 1.499.600 | 2023 | Details |
Transcriptional REGUlation as a mediator of bacterial interactions in the microBIOMEREGUBIOME aims to elucidate transcriptional regulation in gut bacteria responses to environmental stimuli, enhancing understanding of their impact on host health and identifying targets for microbiota modulation. | ERC Starting... | € 1.496.479 | 2023 | Details |
Resolving metabolic interactions between the gut microbiota and the host with multi-omics-based modelling
This project aims to systematically characterize gut bacteria interactions and their metabolic contributions to host health using experimental and computational methods, enabling targeted microbiota interventions.
Engineered symbionts elucidate gut T cell memory and its (dys)regulation
The GuT Memory project aims to uncover the mechanisms of microbiota-directed Th cell memory to enhance vaccine design and target pathogenic T cells in inflammatory bowel disease.
Microbiota-T cell interactions - antigen-specificity and regulation in health and disease
This project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies.
Dissection of the host-microbe crosstalk that controls metabolism and physiology in intestinal symbiosis
This project aims to explore the regulatory mechanisms of intestinal bacteria and their symbiotic relationship with hosts using Drosophila to enhance understanding of gut metabolism and health.
Transcriptional REGUlation as a mediator of bacterial interactions in the microBIOME
REGUBIOME aims to elucidate transcriptional regulation in gut bacteria responses to environmental stimuli, enhancing understanding of their impact on host health and identifying targets for microbiota modulation.