Systems Materials Engineering for High-Rate Bulk Solid-State Conversion in Metal-Sulfur Batteries
This project aims to enhance metal-sulfur batteries' performance by innovating solid-state sulfur phase transformation methods, improving cycle life and energy density through advanced materials engineering.
Projectdetails
Introduction
Batteries will be key in our efforts to reduce CO2 emissions but require major progress in sustainability, cost, and energy density. Liquid-electrolyte metal-sulfur batteries would be game-changers in many respects: a theoretical capacity amongst the highest of all batteries paired with the low cost and sustainability of sulfur.
Challenges of Sulfur Batteries
However, intrinsic obstacles are imposed by the electronically and ionically insulating nature of sulfur. Converting sulfur during discharge/charge is fundamentally different from mixed-conducting storage materials. While Li-ion battery materials transform in the solid-state, sulfur converts to metal sulfides in a solid-liquid-solid process. This causes poor cycle life and insufficient energy densities.
Project Approach
In this project, we approach the fundamental challenge of sulfur phase transformation in a novel way: high-rate conversion in the bulk solid-state. We will pioneer advanced metrologies such as:
- Cryo-electron microscopy
- In situ grazing incidence scattering
- Stochastic modeling
These methods will be used to quantify the phase evolution during electrochemical sulfur conversion at atomic and mesoscopic (1-1000 nm) length scales.
Experimental Foundations
Based on systematic experiments on 2D transition metal carbide (MXene) substrates, we will establish the scientific foundations of:
- Solid-liquid-solid phase transformation
- Solid-state sulfur phase transformation
Cathode Development
Finally, we will form cathodes as artificial solid mixed conductors by structuring sulfides and MXenes to enable high-rate bulk solid-state sulfur conversion. This will solve the cycle life issue of Me-S batteries and boost the stored energy by maximizing the sulfur packing density.
Foundation of SOLIDCON
The foundation of SOLIDCON is a systems materials engineering approach, identifying how mutual structuring of storage materials, electron conductors, and ion conductors defines the physicochemical processes across length scales: electron, ion and mass transport, and electrochemical conversion.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.374.448 |
Totale projectbegroting | € 2.374.448 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- PARIS-LODRON-UNIVERSITAT SALZBURGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Sustainable Solid State Sodium Batteries4SBATT aims to develop sustainable solid-state Na-based batteries with enhanced energy density and safety, leveraging advanced materials science and engineering techniques. | ERC Starting... | € 1.813.373 | 2022 | Details |
Deconstructing the Electrode-Electrolyte Interface by Novel NMR MethodologyThis project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems. | ERC Consolid... | € 2.228.750 | 2025 | Details |
Functionalized Graphene Based Electrode Material for Lithium Sulfur BatteriesThe FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process. | ERC Proof of... | € 150.000 | 2022 | Details |
Multi-metal anode: Towards safe and energy dense batteriesMULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities. | ERC Consolid... | € 1.889.561 | 2023 | Details |
Unveiling atomic-scale elemental distribution of electrode/electrolyte interfaces and interphase in batteriesThis project aims to enhance rechargeable battery performance by using atom probe tomography to investigate solid electrolyte interphase (SEI) formation and its impact on dendrite formation and cycle life. | ERC Consolid... | € 2.201.834 | 2024 | Details |
Sustainable Solid State Sodium Batteries
4SBATT aims to develop sustainable solid-state Na-based batteries with enhanced energy density and safety, leveraging advanced materials science and engineering techniques.
Deconstructing the Electrode-Electrolyte Interface by Novel NMR Methodology
This project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems.
Functionalized Graphene Based Electrode Material for Lithium Sulfur Batteries
The FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process.
Multi-metal anode: Towards safe and energy dense batteries
MULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities.
Unveiling atomic-scale elemental distribution of electrode/electrolyte interfaces and interphase in batteries
This project aims to enhance rechargeable battery performance by using atom probe tomography to investigate solid electrolyte interphase (SEI) formation and its impact on dendrite formation and cycle life.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MEDIATED BIPHASIC BATTERYThe MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials. | EIC Pathfinder | € 2.508.694 | 2022 | Details |
Cheaper, better batteries from common, safe and available raw materialsBroadBit aims to revolutionize the battery industry with new sodium-based technology and a clean production process to enable the transition to renewable energy and reduce carbon emissions. | EIC Accelerator | € 2.500.000 | 2022 | Details |
An innovative thermochemical cycle based on solid sulphur for integrated long-term storage of solar thermal energySULPHURREAL aims to develop a carbon-free process for converting solar energy into storable chemicals using innovative catalysts and reactors for efficient sulphur conversion and industrial symbiosis. | EIC Pathfinder | € 3.982.133 | 2023 | Details |
All in One: Harvesting of waste heat with solid thermal batteryDeveloping an all-solid-state thermal battery that utilizes H+ transport for efficient energy storage from waste heat across a wide temperature range, enhancing practical applications. | EIC Pathfinder | € 2.999.791 | 2024 | Details |
Next generation battery productionDit project ontwikkelt een stabiele silicium-anode voor lithium-ion batterijen met verbeterde prestaties en duurzaamheid, door innovatieve sALD-technologie en industriële schaalproductie te combineren. | Mkb-innovati... | € 350.000 | 2023 | Details |
MEDIATED BIPHASIC BATTERY
The MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials.
Cheaper, better batteries from common, safe and available raw materials
BroadBit aims to revolutionize the battery industry with new sodium-based technology and a clean production process to enable the transition to renewable energy and reduce carbon emissions.
An innovative thermochemical cycle based on solid sulphur for integrated long-term storage of solar thermal energy
SULPHURREAL aims to develop a carbon-free process for converting solar energy into storable chemicals using innovative catalysts and reactors for efficient sulphur conversion and industrial symbiosis.
All in One: Harvesting of waste heat with solid thermal battery
Developing an all-solid-state thermal battery that utilizes H+ transport for efficient energy storage from waste heat across a wide temperature range, enhancing practical applications.
Next generation battery production
Dit project ontwikkelt een stabiele silicium-anode voor lithium-ion batterijen met verbeterde prestaties en duurzaamheid, door innovatieve sALD-technologie en industriële schaalproductie te combineren.