Surgical optogenetic bioprinting of engineered cardiac muscle
LIGHTHEART aims to revolutionize heart failure treatment by developing a surgical bioprinting tool that uses optogenetics to create engineered cardiac muscle directly at the patient's heart.
Projectdetails
Introduction
Heart failure remains a leading cause of mortality worldwide, taking an estimate of 16 million lives each year. Cardiac tissue engineering solutions that can improve the quality of life of those with advanced heart disease have proved challenging so far.
Bioprinting Technology
Bioprinting is an exciting technology that holds promise to fabricate tissues and organs. Lab-grown engineered cardiac muscle requires at least four weeks to mature in a bioreactor.
Project Overview
In LIGHTHEART, an off-the-shelf solution will be developed for treating injured myocardium in vivo. An unconventional combination of bioprinting and optogenetics will be used to surgically fabricate engineered cardiac muscle directly at the patient’s heart.
Surgical Bioprinting Tool
A surgical bioprinting tool will be constructed to achieve vascularization and cellular architectures as observed in native cardiac muscle. Induced pluripotent stem cell-derived cardiac cells will be the basis of the bioinspired biomaterial-free ink that will be printed.
Optogenetic Expression
Optogenetic expression of different light-sensitive proteins at the cell surfaces will be the sole trigger of cellular assembly, thus omitting the need to embed cells in hydrogels or printing in a supporting bath.
Testing Phases
Surgical optogenetic bioprinting will be first tested ex vivo using a silicone human phantom with a mimicking beating heart, and later in vivo in a large animal model in accordance with the 3R principles.
Impact and Future Directions
LIGHTHEART opens up new horizons in the way heart failure can be clinically treated and brings hope to patients who are desperately waiting for a heart transplantation.
Collaborative Efforts
The disruptive nature of LIGHTHEART will unite engineers, surgeons, and scientists to change the future of transplantation medicine with modular bottom-up technologies that allow for in vivo tissue and organ restoration or replacement directly at the operating theatre.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.705 |
Totale projectbegroting | € 1.499.705 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 29-2-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- RUPRECHT-KARLS-UNIVERSITAET HEIDELBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTsG-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease. | ERC Starting... | € 1.497.351 | 2022 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC Consolid... | € 2.969.219 | 2022 | Details |
Advanced human models of the heart to understand cardiovascular diseaseHeart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Nanorobotic microgels to control stem cell fateDeveloping innovative microgel technology with nanorobotics to enhance stem cell differentiation for improved cardiac regeneration in myocardial infarction patients. | ERC Starting... | € 1.500.000 | 2024 | Details |
Piezoceutical biomaterial scaffolds for immunomodulatory-based myocardial repairThe PiezoMac patch aims to regenerate cardiac muscle post-myocardial infarction using optimized piezoelectric stimulation and 3D-printed designs tailored to patient-specific heart anatomy. | ERC Consolid... | € 2.579.608 | 2024 | Details |
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs
G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Advanced human models of the heart to understand cardiovascular disease
Heart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine.
Nanorobotic microgels to control stem cell fate
Developing innovative microgel technology with nanorobotics to enhance stem cell differentiation for improved cardiac regeneration in myocardial infarction patients.
Piezoceutical biomaterial scaffolds for immunomodulatory-based myocardial repair
The PiezoMac patch aims to regenerate cardiac muscle post-myocardial infarction using optimized piezoelectric stimulation and 3D-printed designs tailored to patient-specific heart anatomy.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High-throughput ultrasound-based volumetric 3D printing for tissue engineeringSONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research. | EIC Pathfinder | € 2.999.625 | 2025 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
Better Bioprinting by Light-sheet LithographyB-BRIGHTER aims to develop a novel high-speed bioprinting technology for creating complex engineered tissues, enhancing drug testing and therapeutic applications while fostering healthcare innovation. | EIC Transition | € 2.093.331 | 2022 | Details |
Bringing 3D cardiac tissues to high throughput for drug discovery screensDeveloping a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability. | EIC Transition | € 1.457.500 | 2023 | Details |
building vascular networks and Blood-Brain-Barriers through a Biomimetic manufacturing Technology for the fabrication of Human tissues and ORgansTHOR aims to revolutionize tissue engineering by creating patient-specific, fully functional human tissues using bioinspired mini-robots, eliminating the need for organ transplants. | EIC Pathfinder | € 3.994.150 | 2023 | Details |
High-throughput ultrasound-based volumetric 3D printing for tissue engineering
SONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
Better Bioprinting by Light-sheet Lithography
B-BRIGHTER aims to develop a novel high-speed bioprinting technology for creating complex engineered tissues, enhancing drug testing and therapeutic applications while fostering healthcare innovation.
Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
building vascular networks and Blood-Brain-Barriers through a Biomimetic manufacturing Technology for the fabrication of Human tissues and ORgans
THOR aims to revolutionize tissue engineering by creating patient-specific, fully functional human tissues using bioinspired mini-robots, eliminating the need for organ transplants.