Spatial 3D Semantic Understanding for Perception in the Wild
The project aims to develop new algorithms for robust 3D visual perception and semantic understanding from 2D images, enhancing machine perception and immersive technologies.
Projectdetails
Introduction
Understanding the 3D spatial semantics of the world around us is core to visual perception and digitization. Real-world environments are spatially three-dimensional and must be understood in their 3D context, even from 2D image observations.
Importance of 3D Perception
This understanding will lead to spatially-grounded reasoning and a higher-level perception of the world around us. Such 3D perception will provide the foundation for transformative, next-generation technology across various fields, including:
- Machine perception
- Immersive communications
- Mixed reality
- Architectural or industrial modeling
- And more
New Paradigm in Semantic Understanding
This will enable a new paradigm in semantic understanding that derives primarily from a spatially-consistent, 3D representation rather than relying on image-based reasoning that captures only projections of the world.
Challenges in 3D Semantic Reasoning
However, 3D semantic reasoning from visual data such as RGB or RGB-D observations remains in its infancy. This is due to challenges in:
- Learning from limited amounts of real-world 3D data
- The complex, high-dimensional nature of the problem
Proposed Solutions
In this proposal, we will develop new algorithmic approaches to effectively learn robust visual 3D perception. This will include new learning paradigms for features, representations, and operators to encompass 3D semantic understanding.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET MUENCHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D scene understanding in two glancesThis project aims to understand how adults and infants segment visual scenes by developing new display technologies and using machine learning to simulate and analyze 3D vision inputs. | ERC Consolid... | € 2.126.444 | 2023 | Details |
Federated foundational models for embodied perceptionThe FRONTIER project aims to develop foundational models for embodied perception by integrating neural networks with physical simulations, enhancing learning efficiency and collaboration across intelligent systems. | ERC Advanced... | € 2.499.825 | 2024 | Details |
Omni-Supervised Learning for Dynamic Scene UnderstandingThis project aims to enhance dynamic scene understanding in autonomous vehicles by developing innovative machine learning models and methods for open-world object recognition from unlabeled video data. | ERC Starting... | € 1.500.000 | 2023 | Details |
Structuring spatial knowledge through domain-general, non-spatial learning mechanismsOutOfSpace aims to explore how non-spatial associative learning influences spatial representations, using interdisciplinary methods to enhance our understanding of cognitive mapping. | ERC Starting... | € 1.499.688 | 2024 | Details |
Learning to Create Virtual WorldsThis project aims to develop advanced machine learning techniques for automatic generation of high-fidelity 3D content, enhancing immersive experiences across various applications. | ERC Consolid... | € 2.750.000 | 2025 | Details |
3D scene understanding in two glances
This project aims to understand how adults and infants segment visual scenes by developing new display technologies and using machine learning to simulate and analyze 3D vision inputs.
Federated foundational models for embodied perception
The FRONTIER project aims to develop foundational models for embodied perception by integrating neural networks with physical simulations, enhancing learning efficiency and collaboration across intelligent systems.
Omni-Supervised Learning for Dynamic Scene Understanding
This project aims to enhance dynamic scene understanding in autonomous vehicles by developing innovative machine learning models and methods for open-world object recognition from unlabeled video data.
Structuring spatial knowledge through domain-general, non-spatial learning mechanisms
OutOfSpace aims to explore how non-spatial associative learning influences spatial representations, using interdisciplinary methods to enhance our understanding of cognitive mapping.
Learning to Create Virtual Worlds
This project aims to develop advanced machine learning techniques for automatic generation of high-fidelity 3D content, enhancing immersive experiences across various applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheidsonderzoek naar elimineren van complexe 3D-elementen met AIHet project onderzoekt de haalbaarheid van een innovatieve software voor realistische 360° visualisaties van ruimtelijke veranderingen, om stakeholders beter te betrekken bij omgevingsveranderingen. | Mkb-innovati... | € 20.000 | 2023 | Details |
2D naar 3D mapping voor autonome realtime feedback (MARF)360SportsIntelligence en Ludimos ontwikkelen 3D-mapping software voor het tracken van sporters en het genereren van digital twins, gericht op geautomatiseerde training en wedstrijdregistratie. | Mkb-innovati... | € 256.200 | 2023 | Details |
3D Stereo VisionsysteemHet project onderzoekt de haalbaarheid van een 3D stereo visionsysteem voor agri-robotica, gericht op specifieke toepassingsbehoeften. | Mkb-innovati... | € 20.000 | 2022 | Details |
Haalbaarheidsonderzoek naar elimineren van complexe 3D-elementen met AI
Het project onderzoekt de haalbaarheid van een innovatieve software voor realistische 360° visualisaties van ruimtelijke veranderingen, om stakeholders beter te betrekken bij omgevingsveranderingen.
2D naar 3D mapping voor autonome realtime feedback (MARF)
360SportsIntelligence en Ludimos ontwikkelen 3D-mapping software voor het tracken van sporters en het genereren van digital twins, gericht op geautomatiseerde training en wedstrijdregistratie.
3D Stereo Visionsysteem
Het project onderzoekt de haalbaarheid van een 3D stereo visionsysteem voor agri-robotica, gericht op specifieke toepassingsbehoeften.