Shedding light on three-dimensional gene regulation
This project aims to elucidate gene expression regulation during differentiation using an ultra-fast optogenetic system and high-resolution genomic tools to study 3D chromatin interactions.
Projectdetails
Introduction
The orchestration of precise gene expression patterns during differentiation and development is dependent on the cis-regulatory elements of the genome, which interact and communicate in three-dimensional (3D) chromatin structures. It is not well understood how these interactions are formed and influence gene expression.
Challenges
Our ability to identify the molecular mechanisms involved is hampered by a lack of tools that provide control over the function of regulatory proteins with high temporal precision and that measure 3D chromatin interactions at high resolution.
Project Overview
In this project, we will overcome these hurdles by utilizing an ultra-fast optogenetic system that allows for efficient and reversible nuclear depletion of mammalian proteins upon blue light exposure. We will combine this approach with a range of high-resolution genomic tools to investigate the context-specific functions of:
- Transcription factors
- Co-activators
- Architectural proteins
This investigation will be conducted throughout erythroid differentiation.
Methodology
Importantly, our set-up does not only allow for the characterization of acute protein depletion, but also enables us to map the molecular events triggered by the restoration of regulatory proteins to the nucleus. This unique approach will therefore provide detailed insight into their molecular functions.
Proteomics Approach
Moreover, to get a more complete overview of the proteins involved in gene activation, we will implement a locus-specific proteomics approach that enables unbiased identification of the proteome of regulatory regions.
Conclusion
This innovative integrated research program has strong potential to transform our understanding of the molecular mechanisms that shape the genome and drive gene activation during cellular differentiation. Furthermore, it will lead to the development of cutting-edge tools to analyze gene regulation in its 3D context at high temporal and spatial resolution.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryosThis project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity. | ERC Synergy ... | € 9.546.410 | 2024 | Details |
Systematically Dissecting the Regulatory Logic of Chromatin ModificationsThis project aims to systematically investigate the functional impact of chromatin modifications on gene expression using a novel editing platform to enhance precision medicine and understand epigenomic profiles. | ERC Consolid... | € 1.999.565 | 2023 | Details |
Designing synthetic regulatory domains to understand gene expressionThis project aims to uncover gene regulation mechanisms by systematically altering and analyzing synthetic gene regulatory domains in mouse stem cells to reveal insights into non-coding genome organization. | ERC Starting... | € 1.500.000 | 2023 | Details |
Uncovering the role and regulation of 3D DNA-RNA nuclear dynamics in controlling cell fate decisionsThis project aims to elucidate the interplay between 3D genome organization and transcriptome dynamics in early mouse embryos to identify factors influencing cell fate decisions. | ERC Starting... | € 1.500.000 | 2023 | Details |
The impact of 3D regulatory landscapes on the evolution of developmental programsThe 3D-REVOLUTION project aims to explore how changes in 3D regulatory landscapes influence gonadal sex determination and evolutionary gene regulation using advanced genomic techniques. | ERC Consolid... | € 1.998.217 | 2023 | Details |
Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryos
This project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity.
Systematically Dissecting the Regulatory Logic of Chromatin Modifications
This project aims to systematically investigate the functional impact of chromatin modifications on gene expression using a novel editing platform to enhance precision medicine and understand epigenomic profiles.
Designing synthetic regulatory domains to understand gene expression
This project aims to uncover gene regulation mechanisms by systematically altering and analyzing synthetic gene regulatory domains in mouse stem cells to reveal insights into non-coding genome organization.
Uncovering the role and regulation of 3D DNA-RNA nuclear dynamics in controlling cell fate decisions
This project aims to elucidate the interplay between 3D genome organization and transcriptome dynamics in early mouse embryos to identify factors influencing cell fate decisions.
The impact of 3D regulatory landscapes on the evolution of developmental programs
The 3D-REVOLUTION project aims to explore how changes in 3D regulatory landscapes influence gonadal sex determination and evolutionary gene regulation using advanced genomic techniques.