Quantum Metamaterials with integrated atomic-like arrays for quantum information processing
This project aims to create quantum metamaterials from quantum-emitter arrays to enhance atom-photon entanglement for scalable quantum information processing and one-way quantum computation.
Projectdetails
Introduction
The key to realizing quantum systems that can implement quantum information processing is entanglement generation between many qubits. For distributing entanglement, strong interactions between localized qubits (atoms) and flying qubits (photons) have to be ensured. The quantum-science community is currently searching for systems that offer enhanced light–matter interaction, as the efficiency of quantum operations in current state-of-the-art systems is limited by the interaction strength and loss mechanisms, which impede the generation of useful many-body entangled states.
Proposed Solution
We plan to address this challenge by creating quantum metamaterials from quantum-emitter arrays as novel interfaces for generating atom-photon entanglement. Whereas most of the scientific effort focuses on coupling localized qubits to pre-designed structures to enhance interaction (i.e., cavities), we plan to take a completely different approach: building bottom-up quantum optical metamaterials out of quantum particles.
Methodology
We will achieve this by embedding silicon-vacancy-center arrays integrated in a diamond chip, which have shown to be top candidates for entanglement distribution.
Enhanced Collective Response
We will harness the enhanced collective response of the emitters to light and achieve a quantum response by coherently controlling the emitters' internal degrees of freedom. We will also access never-before-observed long-lived states, which are ideal for quantum memory.
Vision and Applications
Our vision is to implement a scalable quantum light source with many degrees of freedom that generates large-scale atom-photon entanglement. By employing quantum information protocols we developed, our system can generate many-body entangled states applicable to one-way quantum computation.
Advantages of the System
Our system unites major advantages for scaling-up entanglement:
- High-fidelity quantum control over photonic states.
- Potential operation-time speed-up by parallelizing photon control.
- Quantum memory with long-lived states.
- Integration into nanophotonics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.374.938 |
Totale projectbegroting | € 2.374.938 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- THE HEBREW UNIVERSITY OF JERUSALEMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Photonic Quantum Technologies with Strain-Free Artificial AtomsThis project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies. | ERC Starting... | € 1.500.000 | 2023 | Details |
Superatom Waveguide Quantum ElectrodynamicsSuperWave aims to achieve many-body quantum non-linear optics by combining superatoms and waveguide QED to create advanced fiber-coupled quantum devices for various applications in quantum technology. | ERC Synergy ... | € 8.138.040 | 2023 | Details |
Design and Engineering of Optoelectronic MetamaterialsThis project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum. | ERC Advanced... | € 2.500.000 | 2022 | Details |
Quantum Optical Physics with Neutral-Atom Waveguide-QEDThis project aims to develop a versatile apparatus for cold atoms near photonic-crystal waveguides to enable deterministic photon interactions and advance quantum technologies. | ERC Advanced... | € 2.498.750 | 2023 | Details |
Quantum Interactions in Photon-Induced Nearfield Electron MicroscopyThis project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics. | ERC Consolid... | € 2.500.000 | 2025 | Details |
Photonic Quantum Technologies with Strain-Free Artificial Atoms
This project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies.
Superatom Waveguide Quantum Electrodynamics
SuperWave aims to achieve many-body quantum non-linear optics by combining superatoms and waveguide QED to create advanced fiber-coupled quantum devices for various applications in quantum technology.
Design and Engineering of Optoelectronic Metamaterials
This project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum.
Quantum Optical Physics with Neutral-Atom Waveguide-QED
This project aims to develop a versatile apparatus for cold atoms near photonic-crystal waveguides to enable deterministic photon interactions and advance quantum technologies.
Quantum Interactions in Photon-Induced Nearfield Electron Microscopy
This project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Scalable Entangled-Photon based Optical Quantum ComputersThe project aims to develop MOSAIQ, a modular photonic quantum computing platform utilizing efficient single photon qubits for scalable quantum computation. | EIC Accelerator | € 2.499.000 | 2023 | Details |
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with LightCIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications. | EIC Pathfinder | € 2.548.532 | 2024 | Details |
Quantum Optical Networks based on Exciton-polaritonsQ-ONE aims to develop a novel quantum neural network in integrated photonic devices for generating and characterizing quantum states, advancing quantum technology through a reconfigurable platform. | EIC Pathfinder | € 3.980.960 | 2023 | Details |
Quantum Dot coupling engineering (and dynamic spin decoupling/deep nuclei cooling): 2-dimensional cluster state generation for quantum information processingQCEED aims to develop a scalable platform for generating large-scale 2D photonic cluster states using advanced quantum dot systems to enhance quantum information processing capabilities. | EIC Pathfinder | € 3.013.180 | 2025 | Details |
Photon-Atom Non-linearities and Deterministic Applications via arraysPANDA aims to develop a photonic quantum computer using neutral rubidium atoms to enable efficient, deterministic photon-photon interactions for advanced quantum information processing applications. | EIC Pathfinder | € 3.984.437 | 2023 | Details |
Scalable Entangled-Photon based Optical Quantum Computers
The project aims to develop MOSAIQ, a modular photonic quantum computing platform utilizing efficient single photon qubits for scalable quantum computation.
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with Light
CIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications.
Quantum Optical Networks based on Exciton-polaritons
Q-ONE aims to develop a novel quantum neural network in integrated photonic devices for generating and characterizing quantum states, advancing quantum technology through a reconfigurable platform.
Quantum Dot coupling engineering (and dynamic spin decoupling/deep nuclei cooling): 2-dimensional cluster state generation for quantum information processing
QCEED aims to develop a scalable platform for generating large-scale 2D photonic cluster states using advanced quantum dot systems to enhance quantum information processing capabilities.
Photon-Atom Non-linearities and Deterministic Applications via arrays
PANDA aims to develop a photonic quantum computer using neutral rubidium atoms to enable efficient, deterministic photon-photon interactions for advanced quantum information processing applications.