Quantum Metamaterials with integrated atomic-like arrays for quantum information processing

This project aims to create quantum metamaterials from quantum-emitter arrays to enhance atom-photon entanglement for scalable quantum information processing and one-way quantum computation.

Subsidie
€ 2.374.938
2024

Projectdetails

Introduction

The key to realizing quantum systems that can implement quantum information processing is entanglement generation between many qubits. For distributing entanglement, strong interactions between localized qubits (atoms) and flying qubits (photons) have to be ensured. The quantum-science community is currently searching for systems that offer enhanced light–matter interaction, as the efficiency of quantum operations in current state-of-the-art systems is limited by the interaction strength and loss mechanisms, which impede the generation of useful many-body entangled states.

Proposed Solution

We plan to address this challenge by creating quantum metamaterials from quantum-emitter arrays as novel interfaces for generating atom-photon entanglement. Whereas most of the scientific effort focuses on coupling localized qubits to pre-designed structures to enhance interaction (i.e., cavities), we plan to take a completely different approach: building bottom-up quantum optical metamaterials out of quantum particles.

Methodology

We will achieve this by embedding silicon-vacancy-center arrays integrated in a diamond chip, which have shown to be top candidates for entanglement distribution.

Enhanced Collective Response

We will harness the enhanced collective response of the emitters to light and achieve a quantum response by coherently controlling the emitters' internal degrees of freedom. We will also access never-before-observed long-lived states, which are ideal for quantum memory.

Vision and Applications

Our vision is to implement a scalable quantum light source with many degrees of freedom that generates large-scale atom-photon entanglement. By employing quantum information protocols we developed, our system can generate many-body entangled states applicable to one-way quantum computation.

Advantages of the System

Our system unites major advantages for scaling-up entanglement:

  1. High-fidelity quantum control over photonic states.
  2. Potential operation-time speed-up by parallelizing photon control.
  3. Quantum memory with long-lived states.
  4. Integration into nanophotonics.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.374.938
Totale projectbegroting€ 2.374.938

Tijdlijn

Startdatum1-3-2024
Einddatum28-2-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • THE HEBREW UNIVERSITY OF JERUSALEMpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Photonic Quantum Technologies with Strain-Free Artificial Atoms

This project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies.

€ 1.500.000
ERC Synergy ...

Superatom Waveguide Quantum Electrodynamics

SuperWave aims to achieve many-body quantum non-linear optics by combining superatoms and waveguide QED to create advanced fiber-coupled quantum devices for various applications in quantum technology.

€ 8.138.040
ERC Advanced...

Design and Engineering of Optoelectronic Metamaterials

This project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum.

€ 2.500.000
ERC Advanced...

Quantum Optical Physics with Neutral-Atom Waveguide-QED

This project aims to develop a versatile apparatus for cold atoms near photonic-crystal waveguides to enable deterministic photon interactions and advance quantum technologies.

€ 2.498.750
ERC Consolid...

Quantum Interactions in Photon-Induced Nearfield Electron Microscopy

This project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics.

€ 2.500.000

Vergelijkbare projecten uit andere regelingen

EIC Accelerator

Scalable Entangled-Photon based Optical Quantum Computers

The project aims to develop MOSAIQ, a modular photonic quantum computing platform utilizing efficient single photon qubits for scalable quantum computation.

€ 2.499.000
EIC Pathfinder

Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with Light

CIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications.

€ 2.548.532
EIC Pathfinder

Quantum Optical Networks based on Exciton-polaritons

Q-ONE aims to develop a novel quantum neural network in integrated photonic devices for generating and characterizing quantum states, advancing quantum technology through a reconfigurable platform.

€ 3.980.960
EIC Pathfinder

Quantum Dot coupling engineering (and dynamic spin decoupling/deep nuclei cooling): 2-dimensional cluster state generation for quantum information processing

QCEED aims to develop a scalable platform for generating large-scale 2D photonic cluster states using advanced quantum dot systems to enhance quantum information processing capabilities.

€ 3.013.180
EIC Pathfinder

Photon-Atom Non-linearities and Deterministic Applications via arrays

PANDA aims to develop a photonic quantum computer using neutral rubidium atoms to enable efficient, deterministic photon-photon interactions for advanced quantum information processing applications.

€ 3.984.437