Quantum Controlled X-ray Spectroscopy of Elementary Molecular Dynamics
QuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision.
Projectdetails
Introduction
Elementary processes in nature, chemical synthesis, and functional materials critically rely on photochemical transformations. Monitoring these events on the most fundamental level and recording movies of individual molecular motions has been a long-standing dream of chemists and physicists.
Time-Resolved Spectroscopy
To this end, time-resolved spectroscopy uses carefully timed sequences of short laser pulses to concatenate stroboscopic frames of information, in analogy to a video camera. This has recently been pushed to the X-ray domain, where ultrabright femto- and attosecond laser pulses enable scientists to monitor nuclear and electronic motions in real-time.
Challenges
However, key features remain elusive due to their intrinsic weakness and the high complexity of their coupled dynamics.
Project Goal
My primary goal is to tackle this challenge and develop methods capable of monitoring fundamental molecular photochemistry with unprecedented precision.
QuantXS Program
QuantXS is a theoretical program that puts forward the completely novel concept of quantum-controlled X-ray spectroscopy. I specifically propose to implement pulse shaping techniques at the pump, amplification, and probe stage of time-resolved X-ray measurements.
Objectives
This will tailor the spectroscopic pulse sequence for maximum specificity to so far unmeasured signatures of elementary molecular events. To achieve this, I will implement a bottom-up approach starting with the quantum dynamical simulation of a photochemical ring opening and its transient X-ray signals.
Methodology
I will then use optimal control theory to shape light pulses that:
- Maximize the observable absorption, emission, and energy redistribution of existing, weak signatures and bring them above the detection threshold.
- Explore entirely new parameter regimes for time-resolved X-ray spectroscopy to generate conceptually new signals.
Conclusion
By demonstrating these applications, QuantXS will push ultrafast X-ray sciences to new frontiers in its endeavor to measure the fundamental properties of matter.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.401.103 |
Totale projectbegroting | € 1.401.103 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution. | ERC Consolid... | € 2.000.000 | 2025 | Details |
Multidimensional interferometric photoelectron spectroscopy with extreme ultraviolet photonsThis project aims to establish ultrafast multidimensional extreme ultraviolet photoelectron spectroscopy to map and analyze photochemical reactions at the quantum level with high resolution. | ERC Starting... | € 1.577.500 | 2023 | Details |
QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPYQUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics. | ERC Advanced... | € 2.497.225 | 2024 | Details |
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materialsThe project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales. | ERC Starting... | € 1.572.500 | 2025 | Details |
Ultrafast topological engineering of quantum materialsThe project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques. | ERC Starting... | € 1.754.304 | 2023 | Details |
Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2
Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution.
Multidimensional interferometric photoelectron spectroscopy with extreme ultraviolet photons
This project aims to establish ultrafast multidimensional extreme ultraviolet photoelectron spectroscopy to map and analyze photochemical reactions at the quantum level with high resolution.
QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPY
QUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics.
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials
The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.
Ultrafast topological engineering of quantum materials
The project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques.