Mosquito-virus matchmaking: Elucidating the biological basis of compatibility between viruses and mosquitoes
This project aims to utilize single-cell technology and gene editing to understand and manipulate the compatibility between viruses and mosquito vectors, enhancing disease control strategies.
Projectdetails
Introduction
Half of the world’s population is at risk for mosquito-borne diseases. Yet, less than 3% of the mosquito species on earth can transmit pathogens to humans. Even within a species that specializes in biting humans and is the major vector for dengue virus (Aedes aegypti), mosquito populations on the globe transmit DENV with a wide range of efficiencies. Thus, some virus-mosquito pairs “match” with each other, enabling viral transmission, while others don’t.
Background
Understanding the biological processes that determine virus-mosquito compatibility is a longstanding question that has not yet been addressed, mostly owing to a lack of appropriate methods. Here, I propose to leverage advances in single-cell technology, gene editing, and computational tools to understand the basis of virus-mosquito matchmaking.
Objectives
I will address three related challenges:
-
Obtain single-cell transcriptional and epigenetic atlases for key organs of “matched” or “unmatched” virus-mosquito pairs.
To be retransmitted, a virus needs to infect and transit through key organs in a mosquito’s body. Unknown factors that interfere with viral infection and impact further transmission exist in mosquito cells. They will be detected with single-cell technologies. -
Identify the key drivers of virus-mosquito matchmaking.
Using cutting-edge single-cell data analysis methods, I will determine which genetic or epigenetic processes are associated with “matched” and “unmatched” virus-mosquito pairs. -
Reprogram virus-mosquito matchmaking using genome editing.
With key factors of matchmaking identified, I will genetically interfere with their function and determine whether virus-mosquito pairs can artificially be “matched” or “unmatched”.
Conclusion
ITSaMATCH will combine new technologies to unravel the basis for virus-mosquito matchmaking. The project has the potential to substantially advance our understanding of virus-mosquito interactions and inform novel disease control strategies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
- INSTITUT PASTEUR
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The Multitudes of Mosquito Viruses and Their Impact on Arbovirus Disease EcologyThis project aims to explore the biology and ecology of mosquito-specific viruses to understand their interactions with arboviruses and mosquitoes, potentially improving arbovirus transmission control. | ERC Starting... | € 1.500.000 | 2025 | Details |
PIWI-interacting RNAs at the interface of virus-host conflicts in Aedes aegypti mosquitoesThis project aims to explore the role of piRNAs in protecting mosquito germlines from viruses, enhancing understanding of virus-host interactions and developing strategies for mosquito-borne virus resistance. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC Starting... | € 1.500.000 | 2023 | Details |
Evolutionary immunology: using insect models to unravel STING-dependent conserved and innovative antiviral strategiesThis project aims to explore antiviral gene diversity in insects, leveraging cGAMP-triggered responses in Drosophila to identify novel antiviral mechanisms for potential therapeutic applications. | ERC Advanced... | € 2.396.099 | 2025 | Details |
How has the rapid scale up of malaria control in Africa impacted vector competence?This project aims to investigate the effects of insecticide use and drug resistance on malaria parasite development in mosquitoes to enhance vector control strategies and improve intervention options. | ERC Starting... | € 1.499.581 | 2023 | Details |
The Multitudes of Mosquito Viruses and Their Impact on Arbovirus Disease Ecology
This project aims to explore the biology and ecology of mosquito-specific viruses to understand their interactions with arboviruses and mosquitoes, potentially improving arbovirus transmission control.
PIWI-interacting RNAs at the interface of virus-host conflicts in Aedes aegypti mosquitoes
This project aims to explore the role of piRNAs in protecting mosquito germlines from viruses, enhancing understanding of virus-host interactions and developing strategies for mosquito-borne virus resistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Evolutionary immunology: using insect models to unravel STING-dependent conserved and innovative antiviral strategies
This project aims to explore antiviral gene diversity in insects, leveraging cGAMP-triggered responses in Drosophila to identify novel antiviral mechanisms for potential therapeutic applications.
How has the rapid scale up of malaria control in Africa impacted vector competence?
This project aims to investigate the effects of insecticide use and drug resistance on malaria parasite development in mosquitoes to enhance vector control strategies and improve intervention options.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mobile Bio-Lab to support first response in Arbovirus outbreaksMOBVEC aims to develop the first VBD Mobile Bio-Lab to provide real-time vector surveillance and disease modeling, enhancing outbreak response and saving lives and healthcare costs. | EIC Pathfinder | € 2.998.500 | 2023 | Details |
THERAPRODit project richt zich op het ontwikkelen van een behandeling voor West-Nile- en Chikungunya-virusinfecties door innovatieve screening van stoffen, om de virusvermenigvuldiging te stoppen. | Mkb-innovati... | € 163.275 | 2019 | Details |
Mosquito-specific phagostimulants and pheromones for environment-friendly mosquito vector controlMolecular Attraction aims to evaluate the efficacy and environmental impact of innovative mosquito-specific semiochemicals in sub-Saharan Africa to enhance vector control and reduce disease burden. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Ontwikkeling on site diagnostische tools, vaccins en virale remmers ter bestrijding van het westnijlvirus bij mens en dierDit project richt zich op de ontwikkeling van snelle diagnostische testen en vaccins tegen het Westnijlvirus om infecties bij mens en dier te diagnosticeren, voorkomen en behandelen. | Mkb-innovati... | € 90.146 | 2022 | Details |
Hacking the ribosome to map virus-host associationsThe VirHoX project aims to map virus-host associations using a novel technique, VirHo-seq, to enhance understanding of viral interactions and address challenges posed by emerging pathogens. | EIC Pathfinder | € 3.000.000 | 2025 | Details |
Mobile Bio-Lab to support first response in Arbovirus outbreaks
MOBVEC aims to develop the first VBD Mobile Bio-Lab to provide real-time vector surveillance and disease modeling, enhancing outbreak response and saving lives and healthcare costs.
THERAPRO
Dit project richt zich op het ontwikkelen van een behandeling voor West-Nile- en Chikungunya-virusinfecties door innovatieve screening van stoffen, om de virusvermenigvuldiging te stoppen.
Mosquito-specific phagostimulants and pheromones for environment-friendly mosquito vector control
Molecular Attraction aims to evaluate the efficacy and environmental impact of innovative mosquito-specific semiochemicals in sub-Saharan Africa to enhance vector control and reduce disease burden.
Ontwikkeling on site diagnostische tools, vaccins en virale remmers ter bestrijding van het westnijlvirus bij mens en dier
Dit project richt zich op de ontwikkeling van snelle diagnostische testen en vaccins tegen het Westnijlvirus om infecties bij mens en dier te diagnosticeren, voorkomen en behandelen.
Hacking the ribosome to map virus-host associations
The VirHoX project aims to map virus-host associations using a novel technique, VirHo-seq, to enhance understanding of viral interactions and address challenges posed by emerging pathogens.