Mechanics-augmented brain surgery
The MAGERY project seeks to enhance brain surgery by integrating mechanics-based simulations with VR/AR to minimize tissue damage and improve surgical outcomes.
Projectdetails
Introduction
This project aims at revolutionising the treatment of brain disorders through mechanics-augmented brain surgery (MAGERY). Due to the ultrasoft nature of brain tissue, surgical procedures have exceptionally high requirements for minimal invasiveness and maximal safety. During the procedure, brain tissue largely deforms and is easily loaded beyond its functional tolerance.
Technology Integration
A promising technology to improve surgical outcomes is to integrate virtual information either through immersed virtual reality (VR) in training and planning or through augmented reality (AR) overlaying virtual information with the surgeon's real view. Despite rapid advances, to date, most VR/AR solutions have disregarded the complex region-dependent mechanical properties of brain tissue and mechanics-induced cell dysfunction or death.
Project Paradigm
The MAGERY project will follow a new paradigm by focusing on brain mechanics. We imply that we can minimise unnecessary brain tissue damage by integrating continuum mechanics-based simulations into VR/AR solutions.
Required Approaches
Realising this objective will require the combination of state-of-the-art approaches in:
- Live cell imaging
- Nonlinear continuum mechanics
- Computational engineering
Methodology
The applicant and the MAGERY team will for the first time perform simultaneous large-strain mechanical measurements and multiphoton microscopy. Through modelling and simulations, they will identify thresholds for tissue and cell damage under complex three-dimensional loadings. By merging simulation results and VR/AR techniques, this project strives towards real-time predictions of brain tissue deformation and corresponding damage.
Expertise
With her pioneering role in testing and modelling the complex behaviour of human brain tissue, the applicant has excellent prerequisites to tackle these challenges.
Potential Impact
If successful, this project can not only revolutionise VR/AR for brain surgery but also leverage our understanding of the cellular response to three-dimensional mechanical loading across length and time scales.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.229.523 |
Totale projectbegroting | € 2.229.523 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bidirectional remote deep brain control with magnetic anisotropic nanomaterialsBRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders. | ERC Starting... | € 1.500.000 | 2024 | Details |
Engineering soft microdevices for the mechanical characterization and stimulation of microtissuesThis project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments. | ERC Advanced... | € 3.475.660 | 2025 | Details |
Engineering vasoactive probes for brain-wide imaging of molecular signalingThis project aims to develop AVATars that convert neurotransmitter signaling into hemodynamic signals for enhanced fMRI, enabling visualization of molecular dynamics in brain function. | ERC Starting... | € 1.492.968 | 2023 | Details |
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffoldsThis project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing. | ERC Proof of... | € 150.000 | 2023 | Details |
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During MotionThis project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases. | ERC Advanced... | € 3.499.763 | 2022 | Details |
Bidirectional remote deep brain control with magnetic anisotropic nanomaterials
BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.
Engineering soft microdevices for the mechanical characterization and stimulation of microtissues
This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.
Engineering vasoactive probes for brain-wide imaging of molecular signaling
This project aims to develop AVATars that convert neurotransmitter signaling into hemodynamic signals for enhanced fMRI, enabling visualization of molecular dynamics in brain function.
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds
This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During Motion
This project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A synaptic mechanogenetic technology to repair brain connectivityDeveloping a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy. | EIC Pathfinder | € 3.543.967 | 2023 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disordersThe MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes. | EIC Pathfinder | € 4.428.402 | 2022 | Details |
Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analyticsThe 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders. | EIC Pathfinder | € 1.998.347 | 2023 | Details |
Beeldgestuurde oplossingen in de cardiologie en neurologie. Innovatieve weefselherkenning en 4D-monitoring van resultaten bij patiëntenDit project ontwikkelt een cloudplatform voor 3D-beeldbewerking en 4D-analyse om gepersonaliseerde revalidatie en succesvolle pacemakerimplantaties te verbeteren in cardiologie en neurologie. | Mkb-innovati... | € 262.962 | 2019 | Details |
A synaptic mechanogenetic technology to repair brain connectivity
Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders
The MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes.
Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analytics
The 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders.
Beeldgestuurde oplossingen in de cardiologie en neurologie. Innovatieve weefselherkenning en 4D-monitoring van resultaten bij patiënten
Dit project ontwikkelt een cloudplatform voor 3D-beeldbewerking en 4D-analyse om gepersonaliseerde revalidatie en succesvolle pacemakerimplantaties te verbeteren in cardiologie en neurologie.