Investigation of biological seal whiskers to create artificial whisker sensors for underwater robots
This project investigates seal whisker mechanics to understand their prey-tracking abilities and develop biomimetic flow sensors for enhanced underwater robot navigation.
Projectdetails
Introduction
Marine animals employ diverse and fascinating flow sensing phenomena by exploiting the ambient complex fluid mechanics to track prey and escape from predators. Seals are known for their remarkable long-distance prey-hunting capabilities owing to their whiskers, which serve as ultrasensitive flow sensors. For example, a seal is able to detect a fish swimming 180m away by following its vortex streets.
Background
While the unprecedented tracking abilities of seals and the role played by seal whiskers in reducing vortex-induced vibrations have been conclusively demonstrated in the past, the fundamental mechanisms behind such pinpoint tracking remain unclear. The geometrically intricate shape of the seal's whiskers is believed to maximize their signal-to-noise ratio to generate high sensitivity to the tiniest hydrodynamic trails.
Project Objectives
In this project, we propose investigations of the seal whisker behavior, both in live seals and in controlled lab experiments, to shed new light on the fundamental mechanisms that enable the seal to display its excellent prey-tracking behavior.
Key Questions
In particular, we aim to address the following questions:
- How does the seal effectively utilize the spatial distribution of the whisker array on its muzzle to conduct multipoint flow measurements?
- How does this ability help the seal track and locate its prey?
Research Focus
We propose to study the morphological, mechanical, and material properties of whiskers to explain the exquisite sensing capabilities of seals. Furthermore, we aim to use this understanding to develop biomimetic flow sensors for underwater robot navigation.
Sensor Development
- Miniaturized and self-powered micro/nano electromechanical systems (MEMS/NEMS) strain and flow sensors will be developed for experimental animal studies.
- We will also develop artificial 3D printed MEMS whisker sensors and muzzles for experimental fluid-structure interaction studies.
Application
An artificial seal muzzle with mechanosensory MEMS whiskers will be applied on underwater robots to create artificial vision and enable energy-efficient maneuvering through fish-like schooling.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.469.913 |
Totale projectbegroting | € 1.469.913 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- RIJKSUNIVERSITEIT GRONINGENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Vortex microflow inducer that enables detection of ultra-low concentrations of species in sensorsThe VORTEX SENSOR project aims to develop a novel biosensor using acoustic streaming to enhance pathogen detection in aquaculture wastewater, enabling real-time water quality monitoring. | ERC Proof of... | € 150.000 | 2024 | Details |
Direct measurements of collective swimming forces at the mesoscaleThis project aims to experimentally investigate the swimming forces and interactions of brine shrimps to enhance understanding of mesoscale swarming dynamics and inform future biomimetic applications. | ERC Starting... | € 1.500.000 | 2024 | Details |
Vibrational Micro-robots in Viscoelastic Biological TissuesThe project aims to develop vibrational micro-robots (VIBEBOTS) for efficient propulsion and sensing in viscoelastic biological tissues, enhancing targeted drug delivery and minimally-invasive procedures. | ERC Starting... | € 1.499.728 | 2023 | Details |
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During MotionThis project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases. | ERC Advanced... | € 3.499.763 | 2022 | Details |
Brain-wide processing and whole-body biophysics of directional soundThis project aims to investigate the acoustic processing mechanisms in the transparent fish Danionella translucida using advanced imaging techniques to enhance understanding of vertebrate hearing evolution. | ERC Consolid... | € 1.999.256 | 2023 | Details |
Vortex microflow inducer that enables detection of ultra-low concentrations of species in sensors
The VORTEX SENSOR project aims to develop a novel biosensor using acoustic streaming to enhance pathogen detection in aquaculture wastewater, enabling real-time water quality monitoring.
Direct measurements of collective swimming forces at the mesoscale
This project aims to experimentally investigate the swimming forces and interactions of brine shrimps to enhance understanding of mesoscale swarming dynamics and inform future biomimetic applications.
Vibrational Micro-robots in Viscoelastic Biological Tissues
The project aims to develop vibrational micro-robots (VIBEBOTS) for efficient propulsion and sensing in viscoelastic biological tissues, enhancing targeted drug delivery and minimally-invasive procedures.
Simulation-enhanced High-density Magnetomyographic Quantum Sensor Systems for Decoding Neuromuscular Control During Motion
This project aims to develop high-density Magnetomyography using quantum sensors to decode neuromuscular control, enabling breakthroughs in diagnostics and treatment of neurodegenerative diseases.
Brain-wide processing and whole-body biophysics of directional sound
This project aims to investigate the acoustic processing mechanisms in the transparent fish Danionella translucida using advanced imaging techniques to enhance understanding of vertebrate hearing evolution.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
SealSaverHet project onderzoekt de ontwikkeling van een kleiner en goedkoper akoestisch afschrikkingsapparaat voor de visserij om zeehonden te ontmoedigen. | Mkb-innovati... | € 20.000 | 2024 | Details |
BenthicBlobHet project ontwikkelt de "BenthicBlob", een diepzee-monitoringsysteem dat seismische trillingen op de zeebodem registreert voor verbeterde energie-exploratiebeslissingen. | Mkb-innovati... | € 106.750 | 2015 | Details |
Bioinspired Electroactive Aeronautical multiscale LIVE-skinThe BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization. | EIC Pathfinder | € 2.495.445 | 2023 | Details |
Semi-Autonoom Mobiel Monitoring Platform voor offshore Aquacultuur-systemenHet project onderzoekt de haalbaarheid van een elektrische robot voor het monitoren van zeewier op zee, om kosten te verlagen, veiligheid te vergroten en productie te optimaliseren. | Mkb-innovati... | € 19.362 | 2021 | Details |
MusselAIHet MusselAI-project ontwikkelt een service met onderwaterrobots en AI om mosselboeren te voorzien van actuele gegevens en aanbevelingen voor duurzame en efficiënte bedrijfsvoering. | Mkb-innovati... | € 197.300 | 2022 | Details |
SealSaver
Het project onderzoekt de ontwikkeling van een kleiner en goedkoper akoestisch afschrikkingsapparaat voor de visserij om zeehonden te ontmoedigen.
BenthicBlob
Het project ontwikkelt de "BenthicBlob", een diepzee-monitoringsysteem dat seismische trillingen op de zeebodem registreert voor verbeterde energie-exploratiebeslissingen.
Bioinspired Electroactive Aeronautical multiscale LIVE-skin
The BEALIVE project develops a bio-inspired live skin for air-vehicles that enhances aerodynamic performance and reduces noise through advanced electroactive materials and real-time AI optimization.
Semi-Autonoom Mobiel Monitoring Platform voor offshore Aquacultuur-systemen
Het project onderzoekt de haalbaarheid van een elektrische robot voor het monitoren van zeewier op zee, om kosten te verlagen, veiligheid te vergroten en productie te optimaliseren.
MusselAI
Het MusselAI-project ontwikkelt een service met onderwaterrobots en AI om mosselboeren te voorzien van actuele gegevens en aanbevelingen voor duurzame en efficiënte bedrijfsvoering.