Extreme-Ultraviolet Meta-Optics for Attosecond Microscopy
EUVORAM aims to develop novel meta-optical devices for EUV microscopy, enabling high-resolution attosecond imaging of ultrafast electron dynamics in nanoparticles.
Projectdetails
Introduction
Extreme ultraviolet (EUV) light sources have matured, both in brightness, as well as in producing ever shorter attosecond light pulses. Contrary, transmissive EUV optics remain sparse due to material absorption. Thus, EUV microscopy today focuses mainly on lensless techniques or secondary observables such as photoelectrons.
Project Overview
EUVORAM (Extreme-Ultraviolet Meta-Optics for Attosecond Microscopy) will experimentally demonstrate that meta-optical devices are realizable in the EUV using a novel design approach and that they can solve the current lack of transmissive EUV optics.
Design Approach
By emulating the spatial phase profiles of aspheric lenses, we will fabricate focusing meta-optics yielding near-diffraction limited microfoci in the EUV. In combination with contemporary attosecond pulse sources based on laser-driven high-harmonic generation, these meta-lenses will enable high-numerical-aperture EUV focusing that maintains attosecond pulse durations.
Applications
EUVORAM will exploit this capacity to build a light microscope that unifies attosecond time and nanometer spatial resolution. After its demonstration, we will apply this microscope to isolate the ultrafast hot electron dynamics and sub-nanometer charge transfers in individual plasmonic core@shell nanoparticles using spatially resolved attosecond transient absorption spectroscopy.
Significance
EUVORAM will be one of the first projects connecting attosecond science and dielectric meta-surfaces. The planned EUV meta-optics and their novel design will undercut the current short-wavelength limit of meta-surface optics by a factor of four and thus directly redefine the state-of-the-art.
Impact on Microscopy
The project will push lens-based microscopy to unprecedented time resolutions and at the same time allow hyperspectral attosecond imaging. The latter will free attosecond experiments from observing ensemble averages and provide spatially resolved insight into the light-matter interaction of photonic nanodevices.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.792.309 |
Totale projectbegroting | € 1.792.309 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET GRAZpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Flexible Attosecond Soliton Transients for Extreme ResolutionFASTER aims to revolutionize ultrafast spectroscopy by creating attosecond optical pulses for direct observation of valence-electron interactions and fundamental processes in real-time. | ERC Starting... | € 2.453.025 | 2025 | Details |
Next-Generation Light Source: Driving plasmas to power tomorrow’s nanolithographyMOORELIGHT aims to enhance EUV light source efficiency for semiconductor production by optimizing solid-state laser interactions with tailored tin targets and advancing plasma modeling. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Development and Application of Ultrafast Low-Energy Electron MicroscopyThis project develops Ultrafast Low-Energy Electron Microscopy to observe rapid surface dynamics with high resolution, aiming to enhance understanding of phase transformations and energy transfer in materials. | ERC Advanced... | € 2.488.216 | 2022 | Details |
Ultrafast Cathodoluminescence Spectroscopy with Coherent Electron-Driven Photon SourcesThe project aims to develop a low-cost electron-probe technique for visualizing nano-optical excitations and decoherence dynamics at nanometer and femtosecond resolutions in various materials. | ERC Proof of... | € 150.000 | 2024 | Details |
Spatio-temporal shaping of electron wavepackets for time-domain electron holographyThis project aims to develop a tool for quantum coherent shaping of electron wavepackets using light fields, enabling advanced spectroscopy and imaging of optical excitations in nanostructures. | ERC Starting... | € 1.835.895 | 2023 | Details |
Flexible Attosecond Soliton Transients for Extreme Resolution
FASTER aims to revolutionize ultrafast spectroscopy by creating attosecond optical pulses for direct observation of valence-electron interactions and fundamental processes in real-time.
Next-Generation Light Source: Driving plasmas to power tomorrow’s nanolithography
MOORELIGHT aims to enhance EUV light source efficiency for semiconductor production by optimizing solid-state laser interactions with tailored tin targets and advancing plasma modeling.
Development and Application of Ultrafast Low-Energy Electron Microscopy
This project develops Ultrafast Low-Energy Electron Microscopy to observe rapid surface dynamics with high resolution, aiming to enhance understanding of phase transformations and energy transfer in materials.
Ultrafast Cathodoluminescence Spectroscopy with Coherent Electron-Driven Photon Sources
The project aims to develop a low-cost electron-probe technique for visualizing nano-optical excitations and decoherence dynamics at nanometer and femtosecond resolutions in various materials.
Spatio-temporal shaping of electron wavepackets for time-domain electron holography
This project aims to develop a tool for quantum coherent shaping of electron wavepackets using light fields, enabling advanced spectroscopy and imaging of optical excitations in nanostructures.