Electric Machines with Inherent Speed-Dependent Characteristics for More Sustainable and Efficient Energy Conversion
This ERC project aims to enhance electric machine efficiency by developing speed-dependent characteristics through innovative design methods, reducing energy consumption and resource use in the EU.
Projectdetails
Introduction
Half of the total electric energy consumed within the European Union is used for operating electric machines. Those might feature high efficiency for rated load, but partial load and overload performance often is very poor.
Challenges in Electric Machine Design
Additionally, given some voltage and current limits for driving machines, designers need to trade good performance at high torque versus high-speed capabilities. Machines with speed-dependent characteristics would facilitate overcoming the current limitations and thus are the subject of this ERC project.
Innovative Approach
The main approach for realizing operation-dependent machine characteristics is to acquit oneself of thinking that the electric machine structure must be static. Allowing solid parts of the rotor to change in position or powder-based compounds to vary in local density while rotating enables a new class of designs.
Methodology
The realization requires all-new methods for designing the speed-dependent properties. This embraces techniques for:
- Co-simulating mechanical and electromagnetic aspects, including components’ or particles’ movement.
- Experiment-driven characterization of powder-based soft magnetic materials with variable local density.
- Micro- versus macroscopic modeling of magnetic properties.
- Development of promising concepts for future electric machine design and their experimental proof of concept.
Implementation and Impact
The basic idea is simple, but its effective implementation is challenging and requires pioneering cross-disciplinary research. The PI has successfully demonstrated the ability to advance the state-of-the-art in electric machine design.
Expected Outcomes
The gained results will allow for simultaneously achieving higher net efficiency levels and reducing the consumption of resources due to an improved utilization of the applied components. The project will thus help to reduce the overall energy consumption and to minimize the need for critical raw materials.
Conclusion
The reward of this project is tremendous and the expected outcome will beneficially affect our future lives.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.921 |
Totale projectbegroting | € 1.499.921 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAT LINZpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced Magnetic Components for High-Efficiency and High-Power-Density ConvertersThe project aims to develop innovative magnetic technologies for power converters, achieving a 50x size reduction and 5% efficiency improvement for voltage regulator modules in high-performance computing systems. | ERC Consolid... | € 1.998.736 | 2024 | Details |
Engineering Magneto-ionic Materials for Energy-Efficient Actuation and Sensing: From Interfaces to Multifunctional Voltage-Tunable MicromagnetsACTIONS aims to develop energy-efficient magneto-ionic materials for low-power actuation and sensing in micro- and nanotechnologies by utilizing electrochemical reactions for magnetic control. | ERC Consolid... | € 1.994.165 | 2024 | Details |
Artificial Intelligence–Driven Materials Design for Spintronic ApplicationsThis project aims to develop AI tools to optimize Van der Waals heterostructures for energy-efficient spin-orbit torque memories, enhancing speed and storage while reducing power consumption. | ERC Starting... | € 1.078.750 | 2023 | Details |
ELEctrically ConTRolled magnetic AnisotropyELECTRA aims to develop a novel technique to control the Spin-Electric effect in magnetic molecules, enhancing energy-efficient device design for information technology. | ERC Starting... | € 1.498.784 | 2022 | Details |
Fluid gap Electro-Active-Polymer machines for a new generation of mechatronic systemsThis project aims to enhance fluid-gap transducers for reliable operation in extreme environments, enabling advanced mechatronic systems for space and underwater applications. | ERC Starting... | € 1.486.161 | 2025 | Details |
Advanced Magnetic Components for High-Efficiency and High-Power-Density Converters
The project aims to develop innovative magnetic technologies for power converters, achieving a 50x size reduction and 5% efficiency improvement for voltage regulator modules in high-performance computing systems.
Engineering Magneto-ionic Materials for Energy-Efficient Actuation and Sensing: From Interfaces to Multifunctional Voltage-Tunable Micromagnets
ACTIONS aims to develop energy-efficient magneto-ionic materials for low-power actuation and sensing in micro- and nanotechnologies by utilizing electrochemical reactions for magnetic control.
Artificial Intelligence–Driven Materials Design for Spintronic Applications
This project aims to develop AI tools to optimize Van der Waals heterostructures for energy-efficient spin-orbit torque memories, enhancing speed and storage while reducing power consumption.
ELEctrically ConTRolled magnetic Anisotropy
ELECTRA aims to develop a novel technique to control the Spin-Electric effect in magnetic molecules, enhancing energy-efficient device design for information technology.
Fluid gap Electro-Active-Polymer machines for a new generation of mechatronic systems
This project aims to enhance fluid-gap transducers for reliable operation in extreme environments, enabling advanced mechatronic systems for space and underwater applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
EUropean MOtor REnovation initiativeThe EU-MORE project aims to accelerate the replacement of inefficient electric motors through new policies and stakeholder collaboration to enhance energy savings and support EU climate objectives. | LIFE Clean E... | € 1.119.300 | 2022 | Details |
A HOLISTIC APPROACH OF ELECTRIC MOTOR COOLINGE-COOL aims to enhance e-motor efficiency by developing innovative spray cooling technology, potentially increasing performance by 20% and supporting decarbonization in transportation. | EIC Pathfinder | € 2.165.477 | 2024 | Details |
Permanente magnetenHet project onderzoekt de haalbaarheid van het integreren van permanente magneten in elektrische krachtbronnen om energiezuinigere elektromotoren te ontwikkelen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Haalbaarheidsonderzoek stage-reductionECM Technologies onderzoekt de haalbaarheid van een innovatieve 'metal2metal' power sectie voor mud-motoren, die krachtiger en duurzamer is dan concurrenten door het ontbreken van rubber. | Mkb-innovati... | € 20.000 | 2023 | Details |
Ontwikkeling driefasen-matrix converteri2Motion onderzoekt de ontwikkeling van een driefasen-matrix converter voor efficiënte energiebeheer en aansturing van elektrische aandrijvingen. | Mkb-innovati... | € 20.000 | 2020 | Details |
EUropean MOtor REnovation initiative
The EU-MORE project aims to accelerate the replacement of inefficient electric motors through new policies and stakeholder collaboration to enhance energy savings and support EU climate objectives.
A HOLISTIC APPROACH OF ELECTRIC MOTOR COOLING
E-COOL aims to enhance e-motor efficiency by developing innovative spray cooling technology, potentially increasing performance by 20% and supporting decarbonization in transportation.
Permanente magneten
Het project onderzoekt de haalbaarheid van het integreren van permanente magneten in elektrische krachtbronnen om energiezuinigere elektromotoren te ontwikkelen.
Haalbaarheidsonderzoek stage-reduction
ECM Technologies onderzoekt de haalbaarheid van een innovatieve 'metal2metal' power sectie voor mud-motoren, die krachtiger en duurzamer is dan concurrenten door het ontbreken van rubber.
Ontwikkeling driefasen-matrix converter
i2Motion onderzoekt de ontwikkeling van een driefasen-matrix converter voor efficiënte energiebeheer en aansturing van elektrische aandrijvingen.