Dissecting Dust in the Distant Universe: A Panchromatic Study with JWST and ALMA
This project aims to leverage JWST's capabilities to study interstellar dust properties and their impact on galaxy evolution during key cosmic epochs, enhancing our understanding of star formation.
Projectdetails
Introduction
At the core of galaxy evolution is the evolution of the baryonic components that modify the observable properties of galaxies. A crucial component of the baryonic matter is the interstellar medium (ISM) that consists of gas and solid-phase metals called dust.
Importance of Interstellar Dust
Interstellar dust determines how galaxies look from UV to IR, how the ISM behaves, and the very process of star formation that creates the stellar component that defines a galaxy. Despite our wealth of knowledge about dust in local galaxies, very little is known about the properties of dust grains, where it resides inside galaxies, and how it is formed, beyond the nearby Universe (i.e., at high redshifts).
Need for Advancing Knowledge
The fundamental importance of advancing our knowledge about dust at high redshifts is further underlined by the vital need to correct for its attenuation effects in the observed rest-frame UV/optical emission of high-redshift galaxies.
Future Prospects with JWST
This situation will fundamentally change in the next few years owing to the unprecedented capabilities of the James Webb Space Telescope (JWST). This ERC program capitalizes on the massive technological advance of JWST to take a holistic approach, physically and observationally, and conduct a panchromatic study of dust emission and absorption properties at two key cosmic epochs:
- z~1-3, dubbed as Cosmic Noon, the peak epoch of cosmic star formation activity
- z~5-10, the early Universe and the epoch of reionization
Research Methodology
Owing to my leading role in multiple deep extragalactic JWST surveys, my ERC group will take full advantage of the very first data from this revolutionary observatory. This will be done in synergy with ALMA and other powerful ground-based observatories such as VLT and Keck to observe the attenuation and emission properties of dust from rest-frame UV to submm wavelengths at Cosmic Noon and beyond.
Expected Outcomes
This ambitious research program will bring novel key insights into the physical processes that enable star formation and galaxy evolution throughout cosmic time.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.643 |
Totale projectbegroting | € 1.499.643 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new View of Young galaxies with ALMA and JWSTThis project aims to uncover hidden stellar populations and map molecular gas in dusty young galaxies using JWST and ALMA data, enhancing our understanding of early galaxy formation. | ERC Consolid... | € 1.997.345 | 2023 | Details |
ReIonization and Signatures of Early StarsThe RISES project aims to analyze JWST data to understand the formation of early galaxies and the reionization process, enhancing our knowledge of the universe's evolution. | ERC Starting... | € 1.499.478 | 2025 | Details |
Exploring Cosmic Dawn with James Webb Space TelescopeThis project aims to utilize the James Webb Space Telescope to investigate the timeline and mechanisms of cosmic reionization and the properties of the first galaxies formed after the Big Bang. | ERC Advanced... | € 2.086.250 | 2023 | Details |
JWST Breakthrough in Galaxy Formation: Mass Build-up Efficiency at Cosmic DawnSFEER aims to revolutionize our understanding of early galaxy formation by utilizing JWST to analyze the physical properties of massive galaxies during the Epoch of Reionization. | ERC Consolid... | € 1.979.422 | 2023 | Details |
Unveiling the Formation of Massive Galaxies with the James Webb Space TelescopeThis project aims to investigate the quenching of star formation in massive galaxies using JWST observations to identify distinct fast and slow quenching mechanisms across different conditions. | ERC Starting... | € 1.270.668 | 2023 | Details |
A new View of Young galaxies with ALMA and JWST
This project aims to uncover hidden stellar populations and map molecular gas in dusty young galaxies using JWST and ALMA data, enhancing our understanding of early galaxy formation.
ReIonization and Signatures of Early Stars
The RISES project aims to analyze JWST data to understand the formation of early galaxies and the reionization process, enhancing our knowledge of the universe's evolution.
Exploring Cosmic Dawn with James Webb Space Telescope
This project aims to utilize the James Webb Space Telescope to investigate the timeline and mechanisms of cosmic reionization and the properties of the first galaxies formed after the Big Bang.
JWST Breakthrough in Galaxy Formation: Mass Build-up Efficiency at Cosmic Dawn
SFEER aims to revolutionize our understanding of early galaxy formation by utilizing JWST to analyze the physical properties of massive galaxies during the Epoch of Reionization.
Unveiling the Formation of Massive Galaxies with the James Webb Space Telescope
This project aims to investigate the quenching of star formation in massive galaxies using JWST observations to identify distinct fast and slow quenching mechanisms across different conditions.