Coupling morphogen dynamics with mechanics in the control of form and pattern

This project aims to uncover how morphogen dynamics and mechanical properties interact to coordinate patterning and morphogenesis in zebrafish and human gastruloids, with broader implications for biology and medicine.

Subsidie
€ 1.500.000
2024

Projectdetails

Introduction

Embryogenesis entails both the generation of cell type diversity and large-scale morphogenetic movements sculpting the forming body axes. How patterning and morphogenesis are each individually controlled is increasingly understood, yet how these fundamental processes are coordinated remains an open question in biology.

Background

My recent work in zebrafish gastrulation, a crucial developmental stage where the germ layers are specified and shaped, provided a conceptual framework for how patterning and morphogenesis can be coupled by morphogen signalling. However, how a small set of highly conserved morphogens mechanistically controls a striking diversity of biological functions across many developmental systems remains unclear.

Research Gap

This is especially true as little is known about how morphogen signalling encodes the mechanical forces organizing morphogenesis. We hypothesize that examining the multiscale interplay between morphogen dynamics and mechanics will provide the missing link to understand how the emergence of pattern and form are coordinated by a handful of morphogens.

Objectives

Using both zebrafish embryos and human 2D gastruloids, we aim to uncover:

  1. How the dynamics of morphogen signalling encodes the mechanical properties organizing morphogenesis.
  2. How cell and tissue mechanics, in turn, modulate morphogen signalling dynamics and robust patterning.
  3. How cells decode dynamical mechanochemical inputs to instruct cell fate and patterning.

Methodology

Towards these goals, we will combine our expertise in biophysics and developmental biology with recent advances in live-cell signalling reporters, optogenetics, biophysical tools, and gastruloid models to quantitatively understand the design principles and molecular effectors of the cross-talk between morphogen dynamics and mechanics.

Implications

This will generate novel insights relevant beyond developmental biology, with direct implications for the engineering of organoid technologies, regenerative medicine, and our understanding of the evolution of form and pattern.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-8-2024
Einddatum31-7-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBHpenvoerder

Land(en)

Austria

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Morphogenesis meets Cell Fate: Dissecting how Mechanical Forces coordinate Development

This project aims to explore how mechanical forces influence morphogenesis and cell fate in Xenopus embryos, integrating biophysical methods to enhance understanding of tissue formation.

€ 2.000.000
ERC Starting...

Collective Regulation of Cell Decisions

This project aims to explore how collective tissue properties influence cell decisions in zebrafish by manipulating cell parameters to engineer tissue characteristics and uncover developmental mechanisms.

€ 2.486.429
ERC Synergy ...

Control mechanisms and robustness of multicellular symmetry breaking

This project aims to uncover the mechanisms of symmetry breaking in early animal development by integrating genetic, biophysical, and synthetic approaches to enhance our understanding of tissue organization.

€ 10.259.926
ERC Advanced...

Coordination of mouse embryogenesis in space and time at implantation

This project aims to investigate the coordination of developmental mechanisms in peri-implantation mouse embryos using advanced culture and imaging techniques to understand size regulation and morphogenesis.

€ 3.163.750
ERC Starting...

Engineering the Origin of Human Shape: Defining Patterns and Axes in the Early Stage of 3D Pluripotency

OriSha aims to revolutionize in vitro human embryonic development modeling by using a hydrogel-microfluidic system to control biochemical signals for studying neural tube morphogenesis.

€ 1.499.633

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Supervised morphogenesis in gastruloids

This project aims to develop advanced gastruloid technology to create larger, vascularized organ models that better mimic human physiology, reducing reliance on animal experiments.

€ 3.337.725