COmputational DEsign for 4D BIOfabrication: harnessing programmable materials for dynamic pre-clinical cancer models

CoDe4Bio aims to revolutionize cancer research by developing programmable 4D biofabricated models to better understand dynamic physical cues and improve pre-clinical drug screening.

Subsidie
€ 1.495.100
2023

Projectdetails

Introduction

Cancer is a global health burden. In-vitro pre-clinical models play a key role in fighting this burden by encompassing all the activities prior to clinical trials, from tumor microenvironment reconstruction to drug candidate selection.

Challenges in Current Models

However, the frequent failure of promising pre-clinical drug candidates highlights two major drawbacks of these models:

  1. The difficult reproduction of the dynamic cancer structure related to numerous physical cues.
  2. Their experimental nature that suffers from high costs, long times, and limited understanding.

Consequently, the relationship between dynamic physical cues, cell behavior, and drug efficacy is still unknown.

Proposed Solution

CoDe4Bio tackles such a huge knowledge deficiency. We propose a radical methodology shift to a computational approach to harness programmable materials, able to change properties on demand, and realize dynamic 4D biofabricated models whose stimuli-triggered evolution over time (4th dimension) induces targeted physical cues on cancer cells.

Methodology

We will leverage my extensive experience with smart materials and structures to address the challenges of this multidisciplinary project. Specifically, we will develop a computational design framework for 4D biofabrication that combines new data-, geometry-, and model-based methods with additive manufacturing and in-vitro observations.

Objectives

This framework will allow us to:

  • Develop customized stimuli-responsive materials.
  • Engineer a new generation of 4D constructs with programmable mechano-structural properties.
  • Act as mechanical regulators.

Assessment

We will assess the constructs in-vitro on chronic lymphocytic leukemia to achieve a deep understanding of how complex physical cues within lymph nodes and bone marrow affect this incurable cancer in relation to chemoimmuno and targeted therapies.

Conclusion

CoDe4Bio will push the frontiers of solid and computational mechanics to unveil unconventional routes for pre-clinical drug screening and lay the foundation for effective dynamic cancer models.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.495.100
Totale projectbegroting€ 1.495.100

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITA DEGLI STUDI DI PAVIApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug Penetration

This project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes.

€ 1.499.693
ERC Advanced...

Mechanobiology of cancer progression

This project aims to develop an innovative in vivo platform to study tumor fibrosis and improve targeted cancer therapies by mimicking the fibrotic microenvironment of breast cancer.

€ 2.498.690
ERC Proof of...

Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds

This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.

€ 150.000
ERC Advanced...

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

€ 3.475.660
ERC Starting...

Bioinspired composite architectures for responsive 4 dimensional photonics

BIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications.

€ 1.498.579

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy

The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.

€ 2.982.792
EIC Pathfinder

Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration

BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.

€ 4.039.541
EIC Pathfinder

Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.

Bio-HhOST aims to create bio-hybrid materials with living and artificial cells for dynamic communication, enhancing tissue modeling and reducing animal use in drug research.

€ 1.225.468