Chemical rewiring of E3 ubiquitin ligases as a generalizable therapeutic approach
TrickE3 aims to systematically develop monovalent degraders to target undruggable proteins in pancreatic cancer, enhancing drug discovery and expanding the human proteome's targetable space.
Projectdetails
Introduction
Classical drug design relies mostly on the availability of accessible pockets to block specific protein activities. Despite tremendous progress, more than 80% of all human proteins remain beyond the reach of traditional inhibitor-centric approaches. Chemical ablation of protein abundance using bivalent degraders (PROTACs) moves away from an occupancy-driven (inhibition) to an event-driven (binding) pharmacology. However, their design is intrinsically limited to targets that are ligandable via chemical probes. To tackle current unmet clinical problems, we need transformative paradigms.
Potential of Monovalent Degraders
Fortuitous discoveries have illustrated the immense potential of monovalent degraders. These molecules induce the degradation of target proteins by:
- Molecular gluing to E3 ubiquitin ligases
- Prompting their destabilization
They have desirable drug-like properties, proven capacity to induce the degradation of proteins otherwise deemed undruggable, and they are already a clinical reality. However, their discovery has been driven by serendipity, thereby hampering their realization as a generalizable drug solution.
Objectives of TrickE3
TrickE3 seeks to establish the foundations for the systematic development of monovalent degraders. To this end, we will:
- Develop innovative methodologies to detect and predict drug-induced changes in the interactome/activity of E3s at scale.
- Focus on the chemical rewiring of E3s expressed in pancreatic ductal adenocarcinoma (PDAC) due to the imperative need for treatments.
- Prospectively identify monovalent degraders (i) of specific vulnerabilities, and (ii) to unlock new PDAC targets.
Impact on Drug Discovery
At the interface of chemical biology and cancer research, TrickE3 will be an instrumental resource to:
- Broaden drug discovery efforts
- Probe disease-relevant vulnerabilities
- Widen the targetable space of the human proteome
We hope to empower other disciplines to chemically explore, without limits, the degradation of relevant targets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.625 |
Totale projectbegroting | € 1.499.625 |
Tijdlijn
Startdatum | 1-3-2022 |
Einddatum | 28-2-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)penvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeted Protein Degradation as a New Experimental and Therapeutic Approach for Pancreatic Ductal AdenocarcinomaPROTAC-PDAC aims to develop targeted PROTAC therapies to degrade key oncogenic transcription factors in pancreatic cancer, enhancing treatment efficacy while minimizing toxicity. | ERC Consolid... | € 1.999.401 | 2023 | Details |
Deciphering the regulatory logic of the ubiquitin systemThis project aims to elucidate the substrate recognition mechanisms of E3 ubiquitin ligases using functional genetic approaches to enhance understanding of the ubiquitin-proteasome system for therapeutic applications. | ERC Starting... | € 1.528.843 | 2025 | Details |
A general approach for the design of covalent protein proximity inducersThis project aims to expand biochemical perturbations using CoLDR chemistry to create small molecules that activate enzymes, modify PTMs, and control protein interactions for therapeutic applications. | ERC Consolid... | € 1.998.744 | 2024 | Details |
ADPribosylation and Ubiquitination; post-translational interplayThis project aims to investigate the interplay between ubiquitination and ADPribosylation in cellular processes to develop novel therapeutic strategies for diseases like infections and cancer. | ERC Consolid... | € 1.999.625 | 2024 | Details |
Ubiquitin-Proteasome System crosstalk with MetabolismThis project aims to elucidate the regulatory crosstalk between ubiquitination and cellular metabolites using advanced biophysical techniques to enhance understanding of metabolic homeostasis. | ERC Advanced... | € 2.089.688 | 2023 | Details |
Targeted Protein Degradation as a New Experimental and Therapeutic Approach for Pancreatic Ductal Adenocarcinoma
PROTAC-PDAC aims to develop targeted PROTAC therapies to degrade key oncogenic transcription factors in pancreatic cancer, enhancing treatment efficacy while minimizing toxicity.
Deciphering the regulatory logic of the ubiquitin system
This project aims to elucidate the substrate recognition mechanisms of E3 ubiquitin ligases using functional genetic approaches to enhance understanding of the ubiquitin-proteasome system for therapeutic applications.
A general approach for the design of covalent protein proximity inducers
This project aims to expand biochemical perturbations using CoLDR chemistry to create small molecules that activate enzymes, modify PTMs, and control protein interactions for therapeutic applications.
ADPribosylation and Ubiquitination; post-translational interplay
This project aims to investigate the interplay between ubiquitination and ADPribosylation in cellular processes to develop novel therapeutic strategies for diseases like infections and cancer.
Ubiquitin-Proteasome System crosstalk with Metabolism
This project aims to elucidate the regulatory crosstalk between ubiquitination and cellular metabolites using advanced biophysical techniques to enhance understanding of metabolic homeostasis.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The ProM platform: New ways to drug the undruggablePROSION's ProM-platform aims to unlock and target the undruggable 85% of the human proteome, developing new therapies for hard-to-treat diseases like cancer. | EIC Accelerator | € 2.461.375 | 2022 | Details |
The ProM platform: New ways to drug the undruggable
PROSION's ProM-platform aims to unlock and target the undruggable 85% of the human proteome, developing new therapies for hard-to-treat diseases like cancer.