Tuneable Conditional Control of Engineered Bacterial Therapeutics
This project aims to develop a modular synthetic receptor platform for precise control of engineered bacteria in cancer therapy, enhancing safety and efficacy through conditional therapeutic release.
Projectdetails
Introduction
Engineered microbes are attractive platforms for the diagnosis and treatment of several diseases. For example, bacteria can selectively target tumors and are ideal vehicles for in situ delivery of therapeutic agents.
Current Limitations
However, as of today, no engineered living bacterial therapeutics in clinical trials have the ability for conditional control of therapeutic activity. This lack of reliable control over the timing and dosage of effector molecule production limits the specificity, safety, and efficacy of current bacterial therapies.
Project Overview
In this project, I will use a generalizable synthetic receptor platform to control the in vivo therapeutic activity of engineered bacteria using externally administered molecules. As a proof of concept, I will use a receptor responding to a molecule found in the diet to control therapeutic release in tumors. I will use a safe probiotic, E. coli Nissle 1917, with demonstrated tumor targeting properties.
Research Lines
First Research Line
- I will characterize the dose-response and kinetics of synthetic receptors implemented in bacteria colonizing an in vitro 3D tumor spheroids model.
- I will then evaluate the therapeutic activity of strains producing cytolytic molecules in response to external inducers.
Second Research Line
- I will characterize conditional control of gene expression.
- I will then evaluate therapeutic release in a tumor mice model, using cytolytic and immunotherapeutic effectors.
Expected Outcomes
My work will deliver robust, safe, and efficient frameworks for conditional control of bacterial cancer therapy. By enabling in situ drug delivery with a highly precise dosage and timing, it will allow physicians and ultimately the patients to finely control bacterial therapeutic activity.
Future Applications
Because of its modularity, my platform will be further engineerable to detect other conditional inducers. This system will be reusable for the treatment of many other pathologies, including autoimmune and infectious diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Microbial Synthetic in vivo Cell Therapy SystemsThe MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways. | ERC Starting... | € 1.499.938 | 2023 | Details |
In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPRThis project aims to develop synthetic biology tools for precise genetic manipulation of gut bacteria using phage vectors and CRISPR-Cas systems to enhance microbiome-targeted therapies. | ERC Consolid... | € 1.999.780 | 2022 | Details |
Advancing Phage Therapy through Synergistic Strategies: Phage-Mediated Killing and Competitive Exclusion using Engineered ProphagesPHAGE-PRO aims to revolutionize phage therapy by utilizing engineered prophages and probiotics for rapid pathogen targeting and sustained efficacy, enhancing infection management in livestock and human medicine. | ERC Starting... | € 1.500.000 | 2025 | Details |
ModulatIng Cancer therapy RespOnse using Bacterial Extracellular nanovesiclesThe MICROBE project aims to develop innovative BEV nanotherapeutics from gut bacteria to enhance immune checkpoint inhibitor responses in cancer treatment through mechanistic analysis and clinical application. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Scalable Microbial Metabolite Discovery Through Synthetic BiologyThis project aims to enhance the discovery of microbial secondary metabolites by developing a scalable heterologous expression platform to access untapped biosynthetic genes for drug development. | ERC Starting... | € 1.490.250 | 2024 | Details |
Microbial Synthetic in vivo Cell Therapy Systems
The MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways.
In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPR
This project aims to develop synthetic biology tools for precise genetic manipulation of gut bacteria using phage vectors and CRISPR-Cas systems to enhance microbiome-targeted therapies.
Advancing Phage Therapy through Synergistic Strategies: Phage-Mediated Killing and Competitive Exclusion using Engineered Prophages
PHAGE-PRO aims to revolutionize phage therapy by utilizing engineered prophages and probiotics for rapid pathogen targeting and sustained efficacy, enhancing infection management in livestock and human medicine.
ModulatIng Cancer therapy RespOnse using Bacterial Extracellular nanovesicles
The MICROBE project aims to develop innovative BEV nanotherapeutics from gut bacteria to enhance immune checkpoint inhibitor responses in cancer treatment through mechanistic analysis and clinical application.
Scalable Microbial Metabolite Discovery Through Synthetic Biology
This project aims to enhance the discovery of microbial secondary metabolites by developing a scalable heterologous expression platform to access untapped biosynthetic genes for drug development.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infectionsLeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations. | EIC Pathfinder | € 2.665.564 | 2022 | Details |
Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infections
LeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations.