Towards a gene therapy for age-related macular degeneration (AMD)
This project aims to develop a novel exosome-encapsulated AAV therapy to restore blood-retina barrier integrity and prevent progression of geographic atrophy in age-related macular degeneration.
Projectdetails
Introduction
While the blood neural barriers represent significant hurdles for the development of gene therapies for neurological and ophthalmological conditions, it is now becoming clear that many of these conditions actually present with disrupted barrier integrity as the driving force of the pathology.
Related Conditions
Included in these diseases is age-related macular degeneration (AMD), in which we have shown that the blood-retina barrier (BRB) is sub-clinically disrupted and is a key driving force for disease progression (ERC funded Retina Rhythm project).
Need for New Therapy
Specifically related to this Proof of Concept grant, a novel form of therapy for the end stage of AMD, namely geographic atrophy (GA), is now desperately needed. A targeted approach to locally delivering adeno-associated virus (AAV) to endothelial cells of the BRB would offer the opportunity to restore barrier function and prevent disease.
Current Limitations
However, the current tools available to achieve this localized approach to gene therapy are not optimum.
Proposed Solution
Here we will use an exosome encapsulated and endothelial cell specific AAV to achieve robust transduction of retinal endothelial cells. This modified and optimized AAV (Opti-AAV) will represent a novel tool in translating recently identified biological mechanisms into real and meaningful therapies for patients.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2022 |
Einddatum | 31-12-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Retina-Seal: Gene therapy mediated regulation of the blood retina barrierThe project aims to develop novel adeno-associated viruses to enhance claudin-5 expression, stabilizing the blood-retina barrier to prevent age-related macular degeneration progression. | ERC Proof of... | € 150.000 | 2025 | Details |
Cell Rejuvenation Therapy for Age-related Macular DegenerationThe project aims to develop "I-SEE," a novel treatment for age-related macular degeneration that rejuvenates retinal pigment epithelium cells using a unique mRNA cocktail to restore vision. | ERC Proof of... | € 150.000 | 2022 | Details |
Exploring Natural Immunity in Retinal Neovascular DiseaseThis project aims to explore the therapeutic potential of natural killer cells in treating neovascular eye diseases like AMD by examining their function and developing innovative models for study. | ERC Consolid... | € 1.999.681 | 2023 | Details |
A novel and empowered TARGETed gene addition approach at a relevant microglia locus for the treatment of inherited NeuroMetabolic DiseasesDevelop a targeted gene addition approach at a microglia locus in HSCs to safely and effectively treat inherited neurometabolic diseases by enhancing timely microglia-like cell engraftment. | ERC Advanced... | € 2.495.250 | 2022 | Details |
EXPanding AAV gene therapy by EDITingEXPEDITE aims to enhance in vivo gene therapy by integrating therapeutic DNA at specific genomic sites using novel methods, expanding treatment options for genetic diseases in targeted tissues. | ERC Advanced... | € 2.492.303 | 2023 | Details |
Retina-Seal: Gene therapy mediated regulation of the blood retina barrier
The project aims to develop novel adeno-associated viruses to enhance claudin-5 expression, stabilizing the blood-retina barrier to prevent age-related macular degeneration progression.
Cell Rejuvenation Therapy for Age-related Macular Degeneration
The project aims to develop "I-SEE," a novel treatment for age-related macular degeneration that rejuvenates retinal pigment epithelium cells using a unique mRNA cocktail to restore vision.
Exploring Natural Immunity in Retinal Neovascular Disease
This project aims to explore the therapeutic potential of natural killer cells in treating neovascular eye diseases like AMD by examining their function and developing innovative models for study.
A novel and empowered TARGETed gene addition approach at a relevant microglia locus for the treatment of inherited NeuroMetabolic Diseases
Develop a targeted gene addition approach at a microglia locus in HSCs to safely and effectively treat inherited neurometabolic diseases by enhancing timely microglia-like cell engraftment.
EXPanding AAV gene therapy by EDITing
EXPEDITE aims to enhance in vivo gene therapy by integrating therapeutic DNA at specific genomic sites using novel methods, expanding treatment options for genetic diseases in targeted tissues.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
NATURAL INTRAOCULAR PHOTOACTIVATION OF COMPOUNDS TO FIGHT RETINOPATHIESThis project aims to revolutionize retinopathy treatment by developing orally bioavailable drugs that target retinal tissue, reducing side effects and improving access to care. | EIC Pathfinder | € 2.988.434 | 2022 | Details |
Next-generation AAV vectors for liver-directed gene therapyAAVolution aims to enhance liver-directed gene therapy by developing innovative AAV vectors and technologies to overcome current limitations, expanding treatment access for more patients. | EIC Pathfinder | € 4.500.000 | 2022 | Details |
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared careI(eye)-Screen aims to develop an AI-based system for early detection and monitoring of age-related macular degeneration, enhancing accessibility and health equity in vision care. | EIC Pathfinder | € 3.454.613 | 2024 | Details |
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATIONREGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration. | EIC Pathfinder | € 2.943.233 | 2024 | Details |
NOn-VIral gene modified STEM cell therapyThis project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application. | EIC Pathfinder | € 3.644.418 | 2022 | Details |
NATURAL INTRAOCULAR PHOTOACTIVATION OF COMPOUNDS TO FIGHT RETINOPATHIES
This project aims to revolutionize retinopathy treatment by developing orally bioavailable drugs that target retinal tissue, reducing side effects and improving access to care.
Next-generation AAV vectors for liver-directed gene therapy
AAVolution aims to enhance liver-directed gene therapy by developing innovative AAV vectors and technologies to overcome current limitations, expanding treatment access for more patients.
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-Screen aims to develop an AI-based system for early detection and monitoring of age-related macular degeneration, enhancing accessibility and health equity in vision care.
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATION
REGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration.
NOn-VIral gene modified STEM cell therapy
This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.