Skill Performance Estimation from cARdiac Signals
The project aims to develop personalized training solutions by adapting machine learning algorithms to estimate cognitive and physical states from cardiac signals using consumer-grade sensors for enhanced athletic performance.
Projectdetails
Introduction
In any learning situation, be it math education, language learning, or sport training, different learners have different abilities, motivations, and capacities at any given time. Thus, an optimal learning experience can only be achieved with personalized training solutions, dynamically adapted to each learner’s cognitive and/or physical states.
Background
The scientific literature shows that such states could be estimated from Cardiac Signals (CS). In ERC PoC SPEARS, we propose to redefine consumer training apps by enabling them to suggest personalized and adaptive training plans according to an estimation of their users’ cognitive and/or physical states from their CS measured with consumer-grade sensors, e.g., smartwatches.
Previous Work
The outcome of the ERC project BrainConquest should enable us to tackle this challenge. In BrainConquest, we explored a personalized training approach for users of Brain-Computer Interfaces (BCI). In doing so, we developed Machine Learning (ML) and Signal Processing (SP) algorithms to estimate users’ mental states and predict their upcoming performances from their brain and physiological signals, including CS.
Objectives
In SPEARS, we aim to:
- Adapt and improve BrainConquest ML & SP algorithms, initially designed for BCI performance prediction from research-grade brain and CS sensors in the lab.
- Predict cognitive and physical performance from consumer-grade CS sensors in the wild.
- Explore a commercial application of this technology for sport training, particularly in collaboration with the startup Flit Sport.
Collaboration with Flit Sport
Flit Sport sells an app for providing personalized training exercises for endurance sport athletes, based on their past performances and ML. By integrating our CS-based prediction into the Flit Sport training app, we aim to design optimally personalized training solutions for millions of runners worldwide.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUEpenvoerder
- Flit Sport SAS
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unique non-invasive pace-mapping system to identify subjects at risk of arrhythmic sudden deathDevelop a non-invasive mapping and pacing system to detect cardiac signals for predicting sudden cardiac death, improving early diagnosis and management of heart disease. | ERC Advanced... | € 2.488.400 | 2022 | Details |
Enabling Unobtrusive Real-World Monitoring of Brain-Networks with Wearable Neurotechnology and Multimodal Machine LearningThe INTEGRAL project aims to develop a hybrid wearable platform combining HD-DOT and EEG for continuous brain network imaging in everyday environments, enhancing neurotechnology research and applications. | ERC Starting... | € 1.654.850 | 2025 | Details |
Neuromorphic computing system for real-time signal monitoring and classification with ultra-low-power 2D devicesThis project aims to develop a neuromorphic computing system using 2D semiconductor-based charge trap memory for efficient, low-power detection and classification of electrophysiological signals. | ERC Proof of... | € 150.000 | 2024 | Details |
Using CARDIac simulations to run in-silicO clinical TRIALSThis project aims to develop a GPU-accelerated computational platform for simulating cardiac pathologies and device responses, integrating uncertainty quantification to enhance in-silico clinical trials. | ERC Starting... | € 1.499.423 | 2022 | Details |
SMARTSENS: Smart wear for sensing the neuromusculoskeletal system during human movement in vivoSMARTSENS aims to revolutionize neuro-rehabilitation by providing a wearable, non-invasive system for continuous monitoring of neuromuscular parameters during daily activities. | ERC Proof of... | € 150.000 | 2023 | Details |
Unique non-invasive pace-mapping system to identify subjects at risk of arrhythmic sudden death
Develop a non-invasive mapping and pacing system to detect cardiac signals for predicting sudden cardiac death, improving early diagnosis and management of heart disease.
Enabling Unobtrusive Real-World Monitoring of Brain-Networks with Wearable Neurotechnology and Multimodal Machine Learning
The INTEGRAL project aims to develop a hybrid wearable platform combining HD-DOT and EEG for continuous brain network imaging in everyday environments, enhancing neurotechnology research and applications.
Neuromorphic computing system for real-time signal monitoring and classification with ultra-low-power 2D devices
This project aims to develop a neuromorphic computing system using 2D semiconductor-based charge trap memory for efficient, low-power detection and classification of electrophysiological signals.
Using CARDIac simulations to run in-silicO clinical TRIALS
This project aims to develop a GPU-accelerated computational platform for simulating cardiac pathologies and device responses, integrating uncertainty quantification to enhance in-silico clinical trials.
SMARTSENS: Smart wear for sensing the neuromusculoskeletal system during human movement in vivo
SMARTSENS aims to revolutionize neuro-rehabilitation by providing a wearable, non-invasive system for continuous monitoring of neuromuscular parameters during daily activities.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CAP.AICAP.AI ontwikkelt een platform dat hartritmes analyseert met AI en machine learning om hartaandoeningen vroegtijdig op te sporen. | 1.1 - Het ve... | € 498.266 | 2022 | Details |
Cardio Sensing & CoachingHet project ontwikkelt een gebruiksvriendelijke webportal en sensor voor thuiscardiorevalidatie, waarmee patiënten realtime gezondheidsdata kunnen monitoren en feedback ontvangen, om zorgkosten te verlagen. | Mkb-innovati... | € 200.000 | 2015 | Details |
SEIZE.SENSEHet project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid. | Mkb-innovati... | € 117.810 | 2021 | Details |
Precision Hearing Diagnostics and Augmented-hearing TechnologiesThe project aims to develop a portable diagnostic device for cochlear synaptopathy and augmented-hearing technologies, transitioning innovative research into practical clinical applications. | EIC Transition | € 2.499.416 | 2022 | Details |
AlphaBeatsAlphaBeats ontwikkelt een digitale meditatie-oplossing met biofeedback om stress te verminderen via persoonlijke muziek en real-time data-analyse. | Mkb-innovati... | € 20.000 | 2021 | Details |
CAP.AI
CAP.AI ontwikkelt een platform dat hartritmes analyseert met AI en machine learning om hartaandoeningen vroegtijdig op te sporen.
Cardio Sensing & Coaching
Het project ontwikkelt een gebruiksvriendelijke webportal en sensor voor thuiscardiorevalidatie, waarmee patiënten realtime gezondheidsdata kunnen monitoren en feedback ontvangen, om zorgkosten te verlagen.
SEIZE.SENSE
Het project ontwikkelt een innovatief draagbaar apparaat voor realtime epilepsiedetectie, gericht op het verbeteren van patiëntenzorg en veiligheid.
Precision Hearing Diagnostics and Augmented-hearing Technologies
The project aims to develop a portable diagnostic device for cochlear synaptopathy and augmented-hearing technologies, transitioning innovative research into practical clinical applications.
AlphaBeats
AlphaBeats ontwikkelt een digitale meditatie-oplossing met biofeedback om stress te verminderen via persoonlijke muziek en real-time data-analyse.